Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Another characterization of BMO


Authors: R. R. Coifman and R. Rochberg
Journal: Proc. Amer. Math. Soc. 79 (1980), 249-254
MSC: Primary 42B25; Secondary 42B30
DOI: https://doi.org/10.1090/S0002-9939-1980-0565349-8
MathSciNet review: 565349
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following characterization of functions of bounded mean oscillation (BMO) is proved. f is in BMO if and only if

$\displaystyle f = \alpha \log {g^ \ast } - \beta \log {h^ \ast } + b$

where $ {g^ \ast },({h^ \ast })$ is the Hardy-Littlewood maximal function of g, (h), respectively, b is bounded and $ {\left\Vert f \right\Vert _{{\text{BMO}}}} \leqslant c(\alpha + \beta + {\left\Vert b \right\Vert _\infty })$.

References [Enhancements On Off] (What's this?)

  • [1] L. Carleson, Two remarks on $ {H^1}$ and BMO, Advances in Math. 22 (1976), 269-277. MR 0477058 (57:16602)
  • [2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [4] J. Garnett and P. Jones, The distance in BMO to $ {L^\infty }$, Ann. of Math. (2) 108 (1978), 373-393. MR 506992 (80h:46037)
  • [5] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • [6] Y. Meyer, private communication.
  • [7] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [8] E. M. Stein, Note on the class $ L\log L$, Studia Math. 32 (1969), 305-310. MR 0247534 (40:799)
  • [9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 42B30

Retrieve articles in all journals with MSC: 42B25, 42B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0565349-8
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society