Almost disjoint refinement of families of subsets of

Authors:
Bohuslav Balcar and Peter Vojtáš

Journal:
Proc. Amer. Math. Soc. **79** (1980), 465-470

MSC:
Primary 04A20; Secondary 54A25, 54D40

MathSciNet review:
567994

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Without any set-theoretic assumptions, we prove that every uniform ultrafilter on the set *N* of all natural numbers has a Comfort system, that is, an almost disjoint refinement. Moreover, we describe one type of ideal such that the family of all subsets of *N* that are not contained in it has an almost disjoint refinement.

**[BF]**B. Balcar and R. Frankiewicz,*Ultrafilters and*-*points in*(to appear).**[BSV]**Bohuslav Balcar, Petr Simon, and Peter Vojtáš,*Refinement and properties and extending of filters*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**28**(1980), no. 11-12, 535–540 (1981) (English, with Russian summary). MR**628639****[BPS]**Bohuslav Balcar, Jan Pelant, and Petr Simon,*The space of ultrafilters on 𝑁 covered by nowhere dense sets*, Fund. Math.**110**(1980), no. 1, 11–24. MR**600576****[CH]**W. W. Comfort and Neil Hindman,*Refining families for ultrafilters*, Math. Z.**149**(1976), no. 2, 189–199. MR**0429573****[vD]**E. K. van Douwen,*Martin's axiom and pathological points in*(manuscript).**[H]**Stephen H. Hechler,*Generalizations of almost disjointness, 𝑐-sets, and the Baire number of 𝛽𝑁-𝑁*, General Topology and Appl.**8**(1978), no. 1, 93–110. MR**0472520****[Hd]**Neil Hindman,*On the existence of 𝑐-points in 𝛽𝑁\𝑁*, Proc. Amer. Math. Soc.**21**(1969), 277–280. MR**0239565**, 10.1090/S0002-9939-1969-0239565-4**[J]**Thomas Jech,*Set theory*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR**506523****[K]**K. Kunen, Letter to the author, Sept. 14, 1978.**[KvMM]**Kenneth Kunen, Jan van Mill, and Charles F. Mills,*On nowhere dense closed 𝑃-sets*, Proc. Amer. Math. Soc.**78**(1980), no. 1, 119–123. MR**548097**, 10.1090/S0002-9939-1980-0548097-X**[M]**A. R. D. Mathias,*Happy families*, Ann. Math. Logic**12**(1977), no. 1, 59–111. MR**0491197****[P]**R. S. Pierce,*Modules over commutative regular rings*, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR**0217056****[R]**J. Roitman,*Almost disjoint strong refinements*, Notices Amer. Math. Soc.**22**(1975), A 328.**[So]**R. C. Solomon,*Families of sets and functions*, Czechoslovak Math. J.**27(102)**(1977), no. 4, 556–559. MR**0457218****[Sz]**Andrzej Szymański,*On the existence of 𝜔-points*, Proc. Amer. Math. Soc.**66**(1977), no. 1, 128–130. MR**0458395**, 10.1090/S0002-9939-1977-0458395-6**[T]**Alan D. Taylor,*Regularity properties of ideals and ultrafilters*, Ann. Math. Logic**16**(1979), no. 1, 33–55. MR**530430**, 10.1016/0003-4843(79)90015-9

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
04A20,
54A25,
54D40

Retrieve articles in all journals with MSC: 04A20, 54A25, 54D40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1980-0567994-2

Keywords:
Ultrafilter,
almost disjoint family,
-point,
refinement

Article copyright:
© Copyright 1980
American Mathematical Society