Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Linear vector fields on $ \tilde{G}_k(\mathbf{R}^n)$


Authors: Maria Luiza Leite and Isabel Dotti de Miatello
Journal: Proc. Amer. Math. Soc. 80 (1980), 673-677
MSC: Primary 57R25
DOI: https://doi.org/10.1090/S0002-9939-1980-0587953-3
MathSciNet review: 587953
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine the maximal number of linearly independent vector fields on the grassmannian of oriented k-subspaces of $ {R^n}$, which are induced by linear transformations of $ {\Lambda ^k}({R^n})$.


References [Enhancements On Off] (What's this?)

  • [1] F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 0139178 (25:2614)
  • [2] A. Hurwitz, Über die Komposition der quadratische Formen, Math. Ann. 88 (1923), 1-25. MR 1512117
  • [3] H. Iwamoto, On integral invariants and Betti numbers of symmetric Riemannian manifolds. I, J. Math. Soc. Japan 1 (1949), 91-110. MR 0032993 (11:377i)
  • [4] C. Rader, The Betti numbers of Grassmannians, Atas do XIII Colóquio Brasileiro de Matemática, Pocos de Caldas, 1979.
  • [5] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 1-14.
  • [6] E. Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc. 75 (1969), 643-683. MR 0242189 (39:3522)
  • [7] J. Wolf, Spaces of constant curvature, Publish or Perish, Boston, Mass., 1979. MR 928600 (88k:53002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R25

Retrieve articles in all journals with MSC: 57R25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0587953-3
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society