Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

When $ U(\kappa )$ can be mapped onto $ U(\omega )$


Author: Jan van Mill
Journal: Proc. Amer. Math. Soc. 80 (1980), 701-702
MSC: Primary 54A25; Secondary 04A20, 54D40
DOI: https://doi.org/10.1090/S0002-9939-1980-0587959-4
MathSciNet review: 587959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: $ U(\kappa )$ can be mapped onto $ U(\omega ){\text{iff}}\;{\text{cf}}(\kappa ) = \omega {\text{or}}\kappa \geqslant {2^\omega }.$.


References [Enhancements On Off] (What's this?)

  • [B] J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976), 401-439. MR 0401472 (53:5299)
  • [CN] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der Math. Wissenschaften in Einzerdarstellungen, Band 211, Springer-Verlag, Berlin and New York, 1974. MR 0396267 (53:135)
  • [vD] E. K. van Douwen, Transfer of information about $ \beta N - N$ via open remainder maps (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 04A20, 54D40

Retrieve articles in all journals with MSC: 54A25, 04A20, 54D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0587959-4
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society