Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalised Lipschitz class of functions and the absolute summability of Fourier series by Nörlund means


Authors: S. N. Lal and K. N. Singh
Journal: Proc. Amer. Math. Soc. 81 (1981), 41-49
MSC: Primary 42A28; Secondary 40F05, 40G05
DOI: https://doi.org/10.1090/S0002-9939-1981-0589133-5
MathSciNet review: 589133
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main aim of the paper is to investigate the relationship between certain generalised Lipschitz classes of functions and to discuss the absolute Nörlund summability of Fourier series of functions of the class $ {L^q}$ where $ 2 < q < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. MR 0199631 (33:7774)
  • [2] H. C. Chow, Note on the absolute Cesàro summability of power series, Proc. London Math. Soc. (2) 43 (1937), 484-489.
  • [3] -, On the absolute summability of Fourier series, J. London Math. Soc. 17 (1942), 17-23. MR 0006763 (4:38a)
  • [4] G. H. Hardy and J. E. Littlewood, A convergence criterion of Fourier series, Math. Z. 28 (1928), 612-634. MR 1544980
  • [5] R. A. Hunt, On the convergence of Fourier series, Proc. Conf. Orthogonal Expansions and Their Continuous Analogues (Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235-255. MR 0238019 (38:6296)
  • [6] S. N. Lal, On the absolute Nörlund summability of Fourier series, Indian J. Math. 9 (1967), 151-160; Addendum, Ibid. 10 (1968), 167-168. MR 0232155 (38:481)
  • [7] S. N. Lal and Siya Ram, The absolute summability of Fourier series of a function of Wiener's class by Nörlund means, Proc. Amer. Math. Soc. 67 (1977), 87-94. MR 0454502 (56:12753)
  • [8] N. Lusin, Sur la convergence des séries trigonométriques de Fourier, C. R. Acad. Sci. Paris 156 (1913), 1655-1658.
  • [9] L. McFadden, Absolute Nörlund summability, Duke Math. J. 9 (1942), 168-207. MR 0006379 (3:295g)
  • [10] Yasuo Okuyama, On the absolute Nörlund summability of orthogonal series, Proc. Japan Acad. 54 (1978), 113-118. MR 0493132 (58:12163)
  • [11] S. M. Shah, Absolute Nörlund summability of Fourier series, Tôhoku Math. J. 24 (1970), 309-318. MR 0367544 (51:3786)
  • [12] P. L. Ulyanov, Solved and unsolved problems in the theory of trigonometric and orthogonal series, Uspehi Mat. Nauk 19 (1964), 3-69. MR 0161085 (28:4294)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A28, 40F05, 40G05

Retrieve articles in all journals with MSC: 42A28, 40F05, 40G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0589133-5
Keywords: Class $ {\text{Lip}}(\alpha ,q)$, convergence almost everywhere, conjugate function, summable $ \left\vert {N,{p_n}} \right\vert$, maximum modulus
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society