Point-spectrum of semibounded operator extensions

Author:
Palle E. T. Jørgensen

Journal:
Proc. Amer. Math. Soc. **81** (1981), 565-569

MSC:
Primary 47A70; Secondary 47D10

DOI:
https://doi.org/10.1090/S0002-9939-1981-0601731-9

MathSciNet review:
601731

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the Friedrichs extension of a given semibounded operator in a Hilbert space. Assume , and . If for a finite-dimensional projection in the Hubert space we have Const. , then it follows that is an eigenvalue of , and the corresponding eigenspace is contained in the range of . Using this, together with the known order structure on the family of selfadjoint extensions, with given lower bound 0, of minus the Laplace-Beltrami operator, we establish the identity for all for the following problem.

is a unitary representation of a Lie group , and acts on the Hilbert space for some Nikodym-domain . Moreover is obtained as a certain normalized integral for the left--in variant vector fields on , that is, for each such vector field , the skew-adjoint operator is an extension of when regarded as a skew-symmetric operator in with domain .

**[1]**B. Fuglede,*Commuting self-adjoint partial differential operators and a group theoretic problem*, J. Funct. Anal.**16**(1974), 101-121. MR**0470754 (57:10500)****[2]**J. Deny and J. L. Lions,*Les espaces du type de Beppo Levi*, Ann. Inst. Fourier (Grenoble)**5**(1953-54), 305-370. MR**0074787 (17:646a)****[3]**R. Goodman,*One-parameter groups generated by operators in an enveloping algebra*, J. Funct. Anal.**6**(1970), 218-236. MR**0268330 (42:3229)****[4]**L. Gross,*Existence and uniqueness of physical ground states*, J. Funct. Anal.**10**(1971), 52-109. MR**0339722 (49:4479)****[5]**S. Helgason,*Differential geometry and symmetric spaces*, Academic Press, New York, 1962. MR**0145455 (26:2986)****[6]**P. E. T. Jórgensen,*Extensions of symmetric operators and unbounded derivations*, J. Math. Anal. Appl.**73**(1980), 115-133.**[7]**-,*Partial differential operators and discrete subgroups of a Lie group*, Math. Ann.**247**(1980), 101-110. MR**568200 (82b:22025)****[8]**-,*Spectral theory of finite volume domains in*, Adv. in Math, (to appear).**[9]**H. Kalf,*On the characterization of the Friedrichs extension at ordinary or elliptic differential operators with a strongly singular potential*, J. Funct. Anal.**10**(1972), 230-250. MR**0348256 (50:754)****[10]**M. G. Krein,*The theory of self-adjoint extensions of semi-bounded hermitian operators and its applications*, Mat. Sb.**20 (62)**(1947), 431-495. MR**0024574 (9:515c)****[11]**P. D. Lax and R. S. Philips,*Scattering theory for automorphic functions*, Ann. of Math. Studies, vol. 87, Princeton Univ. Press, Princeton, N. J., 1976. MR**0562288 (58:27768)****[12]**E. Nelson and W. F. Stinespring,*Representation of elliptic operators in an enveloping algebra*, Amer. J. Math.**81**(1959), 547-560. MR**0110024 (22:907)****[13]**F. Rellich,*Ein Satz über mittlere Konvergenz*, Nachr. Acad. Wiss. Göttingen Math.-Phys. Kl.II (1930), 30-35.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A70,
47D10

Retrieve articles in all journals with MSC: 47A70, 47D10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0601731-9

Keywords:
Estimates for operators,
extensions,
eigenvalues

Article copyright:
© Copyright 1981
American Mathematical Society