Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the dimension of cubic $ \mu $-spaces


Author: T. Mizokami
Journal: Proc. Amer. Math. Soc. 82 (1981), 291-298
MSC: Primary 54F45
DOI: https://doi.org/10.1090/S0002-9939-1981-0609670-4
MathSciNet review: 609670
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be the countable product of special $ \sigma $-metric spaces defined below. Then it is proved that $ X \leqslant n$ if and only if there exists a $ \sigma $-closure-preserving open base $ \mathcal{W}$ for $ X$ such that $ {\text{Ind}}\;B(W) \leqslant n - 1$ for every $ W \in \mathcal{W}$.


References [Enhancements On Off] (What's this?)

  • [1] C. R. Borges and D. J. Lutzer, Characterizations and mappings of $ {M_i}$-spaces, Topology Conf. (Virginia Polytech. Inst. and State Univ., 1973), Lecture Notes in Math., vol. 375, Springer, Berlin and New York, 1974, pp. 34-40. MR 0362239 (50:14681)
  • [2] T. Mizokami, On Nagata's problem for paracompact $ \sigma $-metric spaces, General Topology Appl. 11 (1980), 211-221. MR 572375 (82i:54063)
  • [3] K. Nagami, Dimension for $ \sigma $-metric spaces, J. Math. Soc. Japan 23 (1971), 123-129. MR 0287521 (44:4725)
  • [4] -, Perfect classes of spaces, Proc. Japan Acad. Ser. A Math. Sci. 48 (1972), 21-24. MR 0307207 (46:6327)
  • [5] -, The equality of dimensions, Fund. Math. 106 (1980), 239-246. MR 584496 (82d:54037)
  • [6] -, Dimension theory, Academic Press, New York, 1970. MR 0271918 (42:6799)
  • [7] J. Nagata, On Hyman's $ M$-spaces, Topology Conf. (Virginia Polytech. Inst. and State Univ., 1973) Lecture Notes in Math., vol. 375, Springer, Berlin and New York, 1974, 198-208. MR 0358726 (50:11185)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45

Retrieve articles in all journals with MSC: 54F45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0609670-4
Keywords: $ \sigma $-metric space, $ \sigma $-closure-preserving open base, special scale
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society