Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Two-dimensional, almost periodic linear systems with proximal and recurrent behavior


Author: Russell A. Johnson
Journal: Proc. Amer. Math. Soc. 82 (1981), 417-422
MSC: Primary 34C27; Secondary 34A30, 54H20
DOI: https://doi.org/10.1090/S0002-9939-1981-0612732-9
MathSciNet review: 612732
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there exist two-dimensional, almost periodic linear systems, with arbitrary basis of frequencies, the angular coordinates of whose solutions have both proximal and recurrent behavior. Such behavior is completely unlike that of any periodic system.


References [Enhancements On Off] (What's this?)

  • [1] D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moscov. Mat. Obšč. 23 (1970); English transl., Trans. Moscow Math. Soc. 23 (1970), 1-35. MR 0370662 (51:6888)
  • [2] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969. MR 0267561 (42:2463)
  • [3] R. Ellis and R. Johnson, Topological dynamics and linear differential systems, J. Differential Equations (to appear). MR 651685 (83c:54058)
  • [4] A. Fathi and M. R. Herman, Existence de diffeomorphismes minimaux, Proc. Conf. Systèmes Dynamiques, Varsovie (1977), Astérisque 49, pp. 37-59. MR 0482843 (58:2889)
  • [5] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 583-616. MR 0133429 (24:A3263)
  • [6] S. Glasner and B. Weiss, On the construction of minimal skew-products, Israel J. Math. 34 (1979), 321-336. MR 570889 (82f:54068)
  • [7] R. Johnson, Almost periodic functions with unbounded integral, Pacific J. Math. 87 (1980), 347-362. MR 592741 (82e:42013)
  • [8] -, Measurable subbundles in linear skew-product flows, Illinois J. Math. 23 (1979), 183-198. MR 528556 (80c:34045)
  • [9] -, On a Floquet theory for two-dimensional, almost periodic linear systems, J. Differential Equations 37 (1980), 184-205. MR 587221 (81j:58069)
  • [10] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, English transl., Princeton Univ. Press, Princeton, N. J., 1960. MR 0121520 (22:12258)
  • [11] R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), 320-358. MR 0501182 (58:18604)
  • [12] G. R. Sell, Linear differential systems, Lecture Notes, University of Minnesota, 1975.
  • [13] W. A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), 775-830. MR 0467705 (57:7558)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C27, 34A30, 54H20

Retrieve articles in all journals with MSC: 34C27, 34A30, 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0612732-9
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society