A Tauberian problem for a Volterra integral operator

Author:
Gustaf Gripenberg

Journal:
Proc. Amer. Math. Soc. **82** (1981), 576-582

MSC:
Primary 45D05; Secondary 40E05

MathSciNet review:
614881

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following question is studied: For which (nonintegrable) kernels does imply that when is bounded and satisfies a Tauberian condition.

**[1]**W. F. Donoghue,*Distributions and Fourier transforms*, Academic Press, New York, 1969.**[2]**Gustaf Gripenberg,*A Volterra equation with nonintegrable resolvent*, Proc. Amer. Math. Soc.**73**(1979), no. 1, 57–60. MR**512058**, 10.1090/S0002-9939-1979-0512058-9**[3]**Gustaf Gripenberg,*Integrability of resolvents of systems of Volterra equations*, SIAM J. Math. Anal.**12**(1981), no. 4, 585–594. MR**617717**, 10.1137/0512051**[4]**G. S. Jordan and Robert L. Wheeler,*A generalization of the Wiener-Lévy theorem applicable to some Volterra equations*, Proc. Amer. Math. Soc.**57**(1976), no. 1, 109–114. MR**0405023**, 10.1090/S0002-9939-1976-0405023-0**[5]**J. J. Levin and D. F. Shea,*On the asymptotic behavior of the bounded solutions of some integral equations. I, II, III*, J. Math. Anal. Appl.**37**(1972), 42–82; ibid. 37 (1972), 288–326; ibid. 37 (1972), 537–575. MR**0306849****[6]**Raymond E. A. C. Paley and Norbert Wiener,*Fourier transforms in the complex domain*, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR**1451142****[7]**Walter Rudin,*Real and complex analysis*, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. McGraw-Hill Series in Higher Mathematics. MR**0344043****[8]**Daniel F. Shea and Stephen Wainger,*Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations*, Amer. J. Math.**97**(1975), 312–343. MR**0372521****[9]**O. J. Staffans,*On the integrability of the resolvent of a Volterra equation*, Report-HTKK-MAT-A103, Helsinki University of Technology, Espoo, Finland, 1977.**[10]**D. V. Widder,*The Laplace transform*, Princeton Univ. Press, Princeton, N.J., 1946.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
45D05,
40E05

Retrieve articles in all journals with MSC: 45D05, 40E05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1981-0614881-8

Article copyright:
© Copyright 1981
American Mathematical Society