Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Krull dimension and reflexivity in some Noetherian rings


Authors: A. Haghany and B. Sarath
Journal: Proc. Amer. Math. Soc. 83 (1981), 1-7
MSC: Primary 16A08; Secondary 16A33, 16A55
DOI: https://doi.org/10.1090/S0002-9939-1981-0619968-1
MathSciNet review: 619968
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study Noetherian prime rings $ R$ which satisfy the formula $ \left\vert R \right\vert = \sup \{ \left\vert {{I^{* *}}/I} \right\vert:I$ is an essential left ideal of $ R\} + 2$, where $ \vert\;\vert$ denotes left Krull dimension. If further $ Q/R$ is $ \left\vert R \right\vert - 1$ unmixed, where $ Q$ is the simple Artinian quotient ring of $ R$, we characterize $ R$ using torsion theories cogenerated by the injective hulls of $ \left\vert R \right\vert - 1$ dimensional critical modules. Also equivalent statements are established, linking homological properties with dimension theory, for $ R$-modules to be reflexive.


References [Enhancements On Off] (What's this?)

  • [1] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc., no. 133, 1973. MR 0352177 (50:4664)
  • [2] A. Haghany, On duality and Krull dimension, J. London Math. Soc. (2) 14 (1976), 79-85. MR 0419518 (54:7539)
  • [3] -, Reflexive ideals in simple Ore extensions, J. London Math. Soc. (2) 16 (1977), 429-436. MR 0466226 (57:6106)
  • [4] A. V. Jategaonkar, Jacobsons conjecture and modules over fully bounded Noetherian rings, J. Algebra 30 (1974), 103-121. MR 0352170 (50:4657)
  • [5] R. Y. Sharp, A note on the dimensions of commutative Noetherian domains, J. London Math. Soc. (2) 115 (1977), 415-418. MR 0444639 (56:2989)
  • [6] B. Stenström, Rings of quotients, Springer-Verlag, Berlin, 1975. MR 0389953 (52:10782)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A08, 16A33, 16A55

Retrieve articles in all journals with MSC: 16A08, 16A33, 16A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0619968-1
Keywords: Reflexive module, Krull dimension, torsion theory
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society