Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Krull dimension and reflexivity in some Noetherian rings


Authors: A. Haghany and B. Sarath
Journal: Proc. Amer. Math. Soc. 83 (1981), 1-7
MSC: Primary 16A08; Secondary 16A33, 16A55
MathSciNet review: 619968
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study Noetherian prime rings $ R$ which satisfy the formula $ \left\vert R \right\vert = \sup \{ \left\vert {{I^{* *}}/I} \right\vert:I$ is an essential left ideal of $ R\} + 2$, where $ \vert\;\vert$ denotes left Krull dimension. If further $ Q/R$ is $ \left\vert R \right\vert - 1$ unmixed, where $ Q$ is the simple Artinian quotient ring of $ R$, we characterize $ R$ using torsion theories cogenerated by the injective hulls of $ \left\vert R \right\vert - 1$ dimensional critical modules. Also equivalent statements are established, linking homological properties with dimension theory, for $ R$-modules to be reflexive.


References [Enhancements On Off] (What's this?)

  • [1] Robert Gordon and J. C. Robson, Krull dimension, American Mathematical Society, Providence, R.I., 1973. Memoirs of the American Mathematical Society, No. 133. MR 0352177
  • [2] Ahmad Haghany, On duality and Krull-dimension, J. London Math. Soc. (2) 14 (1976), no. 1, 79–85. MR 0419518
  • [3] Ahmad Haghany, Reflexive ideals in simple Ore extensions, J. London Math. Soc. (2) 16 (1977), no. 3, 429–436. MR 0466226
  • [4] Arun Vinayak Jategaonkar, Jacobson’s conjecture and modules over fully bounded Noetherian rings, J. Algebra 30 (1974), 103–121. MR 0352170
  • [5] Rodney Y. Sharp, A note on the dimensions of commutative Noetherian domains, J. London Math. Soc. (2) 15 (1977), no. 3, 415–418. MR 0444639
  • [6] Bo Stenström, Rings of quotients, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der Mathematischen Wissenschaften, Band 217; An introduction to methods of ring theory. MR 0389953

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A08, 16A33, 16A55

Retrieve articles in all journals with MSC: 16A08, 16A33, 16A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0619968-1
Keywords: Reflexive module, Krull dimension, torsion theory
Article copyright: © Copyright 1981 American Mathematical Society