Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A formula by V. M. Adamjan, D. Z. Arov and M. G. Kreĭn


Author: Arne Stray
Journal: Proc. Amer. Math. Soc. 83 (1981), 337-340
MSC: Primary 30D50; Secondary 30E05
DOI: https://doi.org/10.1090/S0002-9939-1981-0624925-5
MathSciNet review: 624925
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ F$ in $ {L^\infty }$ of the unit circle, Adamjan, Arov and Krein obtained a formula describing all functions in the coset $ F + {H^\infty }$ of norms not exceeding 1. A proof of this result using classical ideas of Nevanlinna and Schur is given.


References [Enhancements On Off] (What's this?)

  • [1] V. M. Adamjan, D. Z. Arov and M. G. Krein, Infinite Hankel matrices and generalized problems of Caratheodory-Fejér and F. Riez, Functional Anal. Appl. 2 (1968), 1-18. MR 0234274 (38:2591)
  • [2] -, Infinite Hankel matrices and generalized problems of Caratheodory-Fejér and I. Schur, Functional Anal. Appl. 2 (1968), 269-281.
  • [3] -, Analytic properties of Hilbert-Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Mat. USSR Sb. 15 (1971), 31-73.
  • [4] P. L. Duren, Theory of $ {H^p}$-spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [5] J. Garnett, Two remarks on interpolation by bounded analytic functions, Proc. of Pełczyński Conference at Kent State University, Lecture Notes in Math., vol. 604, Springer-Verlag, Berlin and New York, 1977. MR 0486536 (58:6259)
  • [6] M. Heins, On W.S.N. functions and a theorem of Nevanlinna concerning bounded analytic functions, Kodai Math. Sem. Reports, 26 (1975), 245-257. MR 0382652 (52:3534)
  • [7] R. Nevanlinna, Über beschränkte Funktionen die in gegebenen Punkten vorgeschribene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. B 15 (1919), 1-71.
  • [8] -, Über beschränkte analytische Funktionen, Ann. Acad. Sci. Fenn. Ser. A 32 (1929), 1-75.
  • [9] I. Schur, Über Potenzreihen, die im Inneren des Einheitskreise beschränkt sind I, J. Math. 147 (1917), 205-232.
  • [10] -, Über Potenzreihen, die im Inneren des Einheitskreise beschränkt sind I, J. Math. 148 (1918), 122-145.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50, 30E05

Retrieve articles in all journals with MSC: 30D50, 30E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0624925-5
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society