Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hochschild dimension and the prime radical of algebras


Author: Joseph A. Wehlen
Journal: Proc. Amer. Math. Soc. 83 (1981), 443-447
MSC: Primary 16A62; Secondary 13D05
DOI: https://doi.org/10.1090/S0002-9939-1981-0627665-1
MathSciNet review: 627665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a regular local ring and $ A$ an algebra over $ R$ which is finitely generated and free as an $ R$-module. Defining the Hochschild dimension of $ A$ as $ R - \dim A = {\text{left}}\;{\text{h}}{{\text{d}}_{{A^e}}}(A)$, we show the following: if A modulo its prime radical $ L(A)$ is $ R$-free and $ R - \dim A/L(A) = 0$, then $ R - \dim A = {\text{left}}\;{\text{h}}{{\text{d}}_A}(A/L(A))$. Using localization and sheaf theoretic techniques, the result is generalized to regular rings and to absolutely flat (von Neumann regular) rings. The relationship between the $ A$-homological dimension of the algebra $ A$ modulo its prime radical and the algebra modulo its Jacobson radical is explored in view of this result.


References [Enhancements On Off] (What's this?)

  • [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [2] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319. MR 0065544 (16:442c)
  • [3] I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, Ill., 1969. MR 0269449 (42:4345)
  • [4] D. G. Northcott, Ideal theory, Cambridge Tracts in Math. and Math. Phys., no. 42, Cambridge Univ. Press, New York, 1953. MR 0058575 (15:390f)
  • [5] -, An introduction to homological algebra, Cambridge Univ. Press, New York, 1962.
  • [6] R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70 (1967). MR 0217056 (36:151)
  • [7] J. A. Wehlen, Algebras of finite cohomological dimension, Nagoya Math. J. 43 (1971), 127-135. MR 0301054 (46:212)
  • [8] -, Cohomological dimension and global dimension of algebras, Proc. Amer. Math. Soc. 32 (1972), 75-80. MR 0291226 (45:320)
  • [9] -, Algebras over absolutely flat commutative rings, Trans. Amer. Math. Soc. 196 (1974), 149-160. MR 0345996 (49:10722)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A62, 13D05

Retrieve articles in all journals with MSC: 16A62, 13D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0627665-1
Keywords: Hochschild dimension, regular ring, separable algebra, absolutely flat ring, prime radical
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society