Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Primary abelian groups having all high subgroups isomorphic


Author: Doyle O. Cutler
Journal: Proc. Amer. Math. Soc. 83 (1981), 467-470
MSC: Primary 20K10
DOI: https://doi.org/10.1090/S0002-9939-1981-0627671-7
MathSciNet review: 627671
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a primary abelian group such that $ G/{p^\omega }G$ is $ {p^{\omega + n}}$-projective for some positive integer $ n$, and if $ n > 1$ then the $ (\omega + m)$ Ulm invariant of $ G$ is zero for $ 0 \leqslant m < n - 1$. We prove that $ G$ has the property that all of its high subgroups are isomorphic. An example is given to show that in general the condition on the Ulm invariant is necessary and that this property is not preserved by direct sums.


References [Enhancements On Off] (What's this?)

  • [1] D. O. Cutler, On the structure of primary abelian groups of countable Ulm type, Trans. Amer. Math. Soc. 152 (1970), 503-518. MR 0276330 (43:2077)
  • [2] L. Fuchs, Infinite abelian groups, Vols. 1, 2, Academic Press, New York, 1970 and 1973.
  • [3] -, On the $ {p^{\omega + n}}$-projective abelian $ p$-groups, Publ. Math. Debrecen 23 (1976), 309-313. MR 0427496 (55:528)
  • [4] Paul Hill, Certain pure subgroups of primary groups, Topics in Abelian Groups (J. M. Irwin and E. A. Walker, Eds), Scott, Foresman & Co., Chicago, 1963, pp. 311-314. MR 0169908 (30:151)
  • [5] Paul Hill and Charles Megibben, On primary groups with countable basic subgroup, Trans. Amer. Math. Soc. 124 (1966), 49-59. MR 0199260 (33:7409)
  • [6] J. M. Irwin, High subgroups of abelian torsion groups, Pacific J. Math. 11 (1961), 1375-1384. MR 0136654 (25:119b)
  • [7] J. M. Irwin and Elbert A. Walker, On $ N$-high subgroups of abelian groups, Pacific J. Math 11 (1961), 1363-1374. MR 0136653 (25:119a)
  • [8] J. M. Irwin, Carol Peercy and Elbert Walker, Splitting properties of high subgroups, Bull. Soc. Math. France 90 (1963), 185-192. MR 0144958 (26:2498)
  • [9] J. M. Irwin and E. A. Walker (Eds.), Problems on abelian groups, Topics in Abelian Groups, Scott, Foresman & Co., Chicago, 1963, pp. 365-368. MR 0168630 (29:5888)
  • [10] R. J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups (J. M. Irwin and E. A. Walker, Eds.), Scott, Foresman & Co., Chicago, 1963, pp. 121-171. MR 0169913 (30:156)
  • [11] Fred Richman, Extensions of $ p$-bounded groups, Arch. Math. 21 (1970), 449-454. MR 0276333 (43:2080)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20K10

Retrieve articles in all journals with MSC: 20K10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0627671-7
Keywords: High subgroup
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society