Derivations in prime rings
Author:
B. Felzenszwalb
Journal:
Proc. Amer. Math. Soc. 84 (1982), 1620
MSC:
Primary 16A72; Secondary 16A12
MathSciNet review:
633268
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a ring and a derivation of such that , , for all . It is shown that if is primitive then is an infinite field of characteristic and if . Moreover, if is prime and the set of integers is bounded, the same conclusion holds.
 [1]
I.
N. Herstein, On the hypercenter of a ring, J. Algebra
36 (1975), no. 1, 151–157. MR 0371962
(51 #8179)
 [2]
I.
N. Herstein, On a result of Faith, Canad. Math. Bull.
18 (1975), no. 4, 609. MR 0393136
(52 #13946)
 [3]
I.
N. Herstein, Rings with involution, The University of Chicago
Press, Chicago, Ill.London, 1976. Chicago Lectures in Mathematics. MR 0442017
(56 #406)
 [4]
Wallace
S. Martindale III, Prime rings satisfying a generalized polynomial
identity, J. Algebra 12 (1969), 576–584. MR 0238897
(39 #257)
 [5]
Martha
Smith, Rings with an integral element whose centralizer satisfies a
polynomial identity, Duke Math. J. 42 (1975),
137–149. MR 0399156
(53 #3007)
 [1]
 I. N. Herstein, On the hypercenter of a ring, J. Algebra 36 (1975), 151157. MR 0371962 (51:8179)
 [2]
 , On a resullt of Faith, Canad. Math. Bull. 18 (1975), 609. MR 0393136 (52:13946)
 [3]
 , Rings with involution, Univ. of Chicago Press, Chicago, Ill., 1976. MR 0442017 (56:406)
 [4]
 W. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576584. MR 0238897 (39:257)
 [5]
 M. Smith, Rings with an integral element whose centralizer satisfies a polynomial identity, Duke Math. J. 42 (1975), 137149. MR 0399156 (53:3007)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
16A72,
16A12
Retrieve articles in all journals
with MSC:
16A72,
16A12
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198206332686
PII:
S 00029939(1982)06332686
Article copyright:
© Copyright 1982
American Mathematical Society
