Finite test sets and -matrices

Author:
Michael M. Kostreva

Journal:
Proc. Amer. Math. Soc. **84** (1982), 104-105

MSC:
Primary 90C33; Secondary 15A06, 65K05

DOI:
https://doi.org/10.1090/S0002-9939-1982-0633288-1

MathSciNet review:
633288

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The class of matrices with all principal minors positive, known as -matrices, has been characterized by Murty and Tamir using a finite set of test vectors for the linear complementarity problem. This paper refines their characterizations by deriving a set of test vectors which has lower cardinality and vectors which are more easily tested.

**[1]**H. Samelson, R. Thrall and O. Wesler,*A partition theorem for Euclidean**-space*, Proc. Amer. Math. Soc.**9**(1958), 805-807. MR**0097025 (20:3505)****[2]**K. G. Murty,*On the number of solutions to the complementarity problem and spanning properties of complementary cones*, Linear Algebra and Appl.**5**(1972), 65-108. MR**0291183 (45:277)****[3]**-,*On a characterization of**-matrices*, SIAM J. Appl. Math.**20**(1971), 378-383. MR**0292868 (45:1950)****[4]**A. Tamir,*On a characterization of**-matrices*, Math. Programming**4**(1973), 110-112. MR**0323798 (48:2154)****[5]**C. E. Lemke,*Bimatrix equilibrium points and mathematical programming*, Management Sci.**11**(1965), 681-689. MR**0189823 (32:7243)****[6]**C. B. Garcia,*Some classes of matrices in linear complementarity theory*, Math. Programming**5**(1973), 299-310. MR**0337312 (49:2081)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
90C33,
15A06,
65K05

Retrieve articles in all journals with MSC: 90C33, 15A06, 65K05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0633288-1

Article copyright:
© Copyright 1982
American Mathematical Society