Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Strong local homogeneity does not imply countable dense homogeneity

Author: Jan van Mill
Journal: Proc. Amer. Math. Soc. 84 (1982), 143-148
MSC: Primary 54G20; Secondary 54F25
MathSciNet review: 633296
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a connected and locally connected subspace of the plane which is Baire and strongly locally homogeneous (as a consequence, the example is homogeneous) but which is not countable dense homogeneous.

References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. (to appear). MR 656491 (83j:57009)
  • [2] R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194. MR 0301711 (46:866)
  • [3] E. K. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Adv. in Math. (to appear). MR 742164 (85k:28018)
  • [4] R. Engelking, Dimension theory, Polish Scientific Publishers, Warsaw; North-Holland, Amsterdam, 1978. MR 0482697 (58:2753b)
  • [5] J. de Groot, Groups represented by homeomorphism groups, Math. Ann. 138 (1959), 80-102. MR 0119193 (22:9959)
  • [6] K. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" de M. Fréchet, Fund. Math. 8 (1925), 201-208.
  • [7] M. Lavrentieff, Contribution à la théorie des ensembles homéomorphes, Fund. Math. 6 (1924), 149-160.
  • [8] J. van Mill, Homogeneous subsets of the real line (to appear). MR 660152 (83h:54048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54G20, 54F25

Retrieve articles in all journals with MSC: 54G20, 54F25

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society