Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embedding the free group $ F(X)$ into $ F(\beta X)$


Authors: Temple H. Fay, M. Rajagopolan and Barbara V. Smith-Thomas
Journal: Proc. Amer. Math. Soc. 84 (1982), 297-302
MSC: Primary 22A05; Secondary 54D35
DOI: https://doi.org/10.1090/S0002-9939-1982-0637187-0
MathSciNet review: 637187
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for a Tychonoff space, $ X$ and the canonical embedding $ {\beta _X}:X \to \beta X$, the induced homomorphism $ F{\beta _X}:F(X) \to F(\beta X)$ is an embedding between the free topological groups when $ X$ has the property that $ {X^n}$ is pseudo-compact for all $ n \geqslant 1$. An application of this result is if $ X$ is such a space and $ \beta X$ is 0-dimensional, then $ F(X)$ is 0-dimensional.


References [Enhancements On Off] (What's this?)

  • 1. C. R. Borges, Free topological groups, J. Austral. Math. Soc. Ser. A 23 (1977), 360-365. MR 0486274 (58:6040)
  • [1] T. H. Fay, E. T. Ordman and B. V. Smith-Thomas, The free topological group over the rationals, Gen. Topology Appl. 10 (1979), 33-47. MR 519712 (80e:22001)
  • [2] T. H. Fay, M. Rajagopalan and B. V. Smith-Thomas, Free groups, free products, and 0-dimensionality, Houston J. Math. (to appear). MR 684160 (84f:22003)
  • [3] S. P. Franklin and B. V. Smith-Thomas, A survey of $ {k_\omega }$-spaces, Topology Proc. 2 (1977), 111-124. MR 540599 (80k:54044)
  • [4] L. Gillman and M. Jerrison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 0116199 (22:6994)
  • [5] I. Glicksburg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. MR 0105667 (21:4405)
  • [6] M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324; English transl. in Amer. Math. Soc. Transl., no. 35 (1951); reprinted in Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
  • [7] J. P. L. Hardy, S. A. Morris and H. B. Thompson, Applications of the Stone-Čech compactification to free topological groups, Proc. Amer. Math. Soc. 55 (1976), 160-164. MR 0424994 (54:12952)
  • [8] A. A. Markov, On free topological groups, C. R. (Doklady) Akad. Sci. URSS (N. S.) 31 (1941), 299-301; Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl. in Amer. Math. Soc. Transl., no. 30 (1950), 11-88; reprinted in Amer. Math. Soc. Transl. (1) 8 (1962), 195-275. MR 0004634 (3:36c)
  • [9] S. Morris, E. T. Ordman and H. B. Thompson, The topology of free products of topological groups, Proc. Second Internat. Conf. Group Theory (Canberra, 1973), Lecture Notes in Math., vol. 372, Springer-Verlag, Berlin and New York, 1974, pp. 504-515. MR 0360912 (50:13359)
  • [10] E. Nummela, Uniform free topological groups and Samuel compactifications, Topology Appl. (to appear). MR 637429 (83i:54027)
  • [11] E. T. Ordman, Free $ k$-groups and free topological groups, Gen. Topology Appl. 5 (1975), 205-219. MR 0427525 (55:557)
  • [12] P. Samuel, On universal mappings and free topological groups, Bull. Amer. Math. Soc. 54 (1948), 591-598. MR 0025152 (9:605f)
  • [13] B. V. S. Thomas, Free topological groups, Gen. Topology Appl. 4 (1974), 51-72. MR 0342639 (49:7385)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05, 54D35

Retrieve articles in all journals with MSC: 22A05, 54D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0637187-0
Keywords: Free topological group, pseudocompact, Stone-Čech compactification, Tychonoff space
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society