Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



La pathologie des relèvements invariants

Author: Michel Talagrand
Journal: Proc. Amer. Math. Soc. 84 (1982), 379-382
MSC: Primary 46G15; Secondary 28A51
MathSciNet review: 640236
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sur un groupe abélien localement compact $ G$, il existe une fonction mesurable $ f$ telle que pour tout relèvement $ \rho $ de $ {L^\infty }(G)$ invariant par translation, la fonction $ \rho (f)$ ne soit pas universellement mesurable, et ne possède pas la propriété de Baire forte.

References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of measurable functions, Amer. J. Math. 100 (1978), 845-886. MR 509077 (80b:54017)
  • [2] A. and C. Ionescu Tulcea, Topics in the theory of liftings, Springer-Verlag, Berlin and New York, 1979.
  • [3] -, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proc. Fifth Berkeley Sympos. Math. and Probab., vol. II, part 1, Univ. of California Press, Berkeley, 1972, pp. 63-98. MR 0212122 (35:2997)
  • [4] R. A. Johnson, Strong liftings which are not Borel lifting, Proc. Amer. Math. Soc. 80 (1980), 234-236. MR 577750 (81m:46061)
  • [5] K. Kuratovski, Topology, Academic Press, New York, 1966. MR 0193605 (33:1823)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G15, 28A51

Retrieve articles in all journals with MSC: 46G15, 28A51

Additional Information

Keywords: Translation invariant lifting, Borel lifting
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society