On steady incompressible threedimensional hydromagnetic flows
Authors:
G. Prasad and T. Singh
Journal:
Proc. Amer. Math. Soc. 85 (1982), 7986
MSC:
Primary 76W05; Secondary 53B50
MathSciNet review:
647903
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper certain theorems of theoretical interest have been established with the help of the geometrical properties of Faraday's surface (which is spanned by the flow and field lines). These theorems shed light on the behaviour of steady incompressible hydromagnetic flows. The complexlamellar acceleration and simple geodesic motion admitted by such flows have also been studied.
 [1]
E.
R. Suryanarayan, On the geometry of streamlines in
hydromagnetic fluid flows when the magnetic field is along a fixed
direction, Proc. Amer. Math. Soc. 16 (1965), 90–96. MR 0171488
(30 #1719), http://dx.doi.org/10.1090/S00029939196501714888
 [2]
Robert
H. Wasserman, On the geometry of magnetohydrodynamic flow,
Quart. J. Mech. Appl. Math. 20 (1967), 219–231. MR 0229422
(37 #4996)
 [3]
G. Purushotham, On the geometry of streamlines in hydromagnetic fluid flows, Tensor (N. S.) 25 (1972), 229237.
 [4]
G. Purushotham and S. S. Rao, On complexlamellar hydromagnetic steady gas flows, Tensor (N. S.) 20 (1969), 343346.
 [5]
E.
R. Suryanarayan, Intrinsic equations for hydromagnetic flows,
Rev. Roumaine Math. Pures Appl. 17 (1972), 103–112.
MR
0303837 (46 #2973)
 [6]
A.
Indrasena, Steady rotating hydromagnetic flows, Tensor (N.S.)
32 (1978), no. 3, 350–354. MR 516375
(80e:76061)
 [7]
G. Prasad, S. S. Gangwar and S. B. Misra, Intrinsic equations for the magnetofluid flows, Indian J. Pure Appl. Math. 10 (1979), 204208.
 [8]
A.
W. Marris and S.
L. Passman, Vector fields and flows on developable surfaces,
Arch. Rational Mech. Anal. 32 (1969), 29–86. MR 0235791
(38 #4094)
 [9]
A.
W. Marris, On steady threedimensional motions, Arch. Rational
Mech. Anal. 35 (1969), 122–168. MR 0253635
(40 #6849)
 [1]
 E. R. Suryanarayan, On the geometry of streamlines in hydromagnetic fluid flows when the magnetic field is along a fixed direction, Proc. Amer. Math. Soc. 16 (1965), 9096. MR 0171488 (30:1719)
 [2]
 R. H. Wasserman, On the geometry of magnetohydrodynamic flows, Quart. J. Mech. Appl. Math. 20 (1967), 219. MR 0229422 (37:4996)
 [3]
 G. Purushotham, On the geometry of streamlines in hydromagnetic fluid flows, Tensor (N. S.) 25 (1972), 229237.
 [4]
 G. Purushotham and S. S. Rao, On complexlamellar hydromagnetic steady gas flows, Tensor (N. S.) 20 (1969), 343346.
 [5]
 E. R. Suryanarayan, Intrinsic equations for hydromagnetic flows, Rev. Roumaine Math. Pures Appl. 17 (1972), 103112. MR 0303837 (46:2973)
 [6]
 A. Indrasena, Steady rotating hydromagnetic flows, Tensor (N. S.) 32 (1978), 350354. MR 516375 (80e:76061)
 [7]
 G. Prasad, S. S. Gangwar and S. B. Misra, Intrinsic equations for the magnetofluid flows, Indian J. Pure Appl. Math. 10 (1979), 204208.
 [8]
 A. W. Marris and S. L. Passman, Vector fields and flows on developable surfaces, Arch. Rational Mech. Anal. 32 (1969), 2986 and the references quoted therein. MR 0235791 (38:4094)
 [9]
 A. W. Marris, On steady threedimensional motions, Arch. Rational Mech. Anal. 35 (1969), 122168. MR 0253635 (40:6849)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
76W05,
53B50
Retrieve articles in all journals
with MSC:
76W05,
53B50
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919820647903X
PII:
S 00029939(1982)0647903X
Keywords:
Hydromagnetic flows,
Faraday's surface,
complexlamellar acceleration,
simple geodesic motion
Article copyright:
© Copyright 1982 American Mathematical Society
