Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the magnitude of Fourier coefficients


Authors: Michael Schramm and Daniel Waterman
Journal: Proc. Amer. Math. Soc. 85 (1982), 407-410
MSC: Primary 42A16; Secondary 26A45
DOI: https://doi.org/10.1090/S0002-9939-1982-0656113-1
MathSciNet review: 656113
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ f$ is a function on $ {R^1}$ of $ \Lambda $-bounded variation and period $ 2\pi $, then its $ n$th Fourier coefficient $ \hat f(n) = O(1/\Sigma _1^n1/{\lambda _j})$ and its integral modulus of continuity $ {\omega _1}(f;\delta ) = O(1/\Sigma _1^{[1/\delta ]}1/{\lambda _j})$. The result on $ \hat f(n)$ is best possible in a sense. These results can be extended to certain other classes of functions of generalized variation.


References [Enhancements On Off] (What's this?)

  • [1] S. Perlman and D. Waterman, Some remarks on functions of $ \Lambda $-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 113-118. MR 521883 (80e:26007)
  • [2] M. Shiba, On absolute convergence of Fourier series of functions of class $ \Lambda {\text{B}}{{\text{V}}^{(p)}}$ Sci. Rep. Fukushima Univ. 30 (1980), 7-10. MR 599729 (83d:42011)
  • [3] S. Wang, Personal communication.
  • [4] D. Waterman, On the summability of Fourier series of functions of $ \Lambda $-bounded variation, Studia Math. 55 (1976), 87-95. MR 0402391 (53:6212)
  • [5] -, On $ \Lambda $-bounded variation, Studia Math. 57 (1976), 33-45. MR 0417355 (54:5408)
  • [6] -, Fourier series of functions of $ \Lambda $-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 119-123. MR 521884 (80j:42010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A16, 26A45

Retrieve articles in all journals with MSC: 42A16, 26A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0656113-1
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society