Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Eigenvalues of the Laplacian on forms

Author: Jozef Dodziuk
Journal: Proc. Amer. Math. Soc. 85 (1982), 437-443
MSC: Primary 58G25; Secondary 35P15, 58G30
MathSciNet review: 656119
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some bounds for eigenvalues of the Laplace operator acting on forms on a compact Riemannian manifold are derived. In case of manifolds without boundary we give upper bounds in terms of the curvature, its covariant derivative and the injectivity radius. For a small geodesic ball upper and lower bounds of eigenvalues in terms of bounds of sectional curvature are given.

References [Enhancements On Off] (What's this?)

  • [1] Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
  • [2] Shiu Yuen Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289–297. MR 0378001
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
  • [4] J. Eichhorn, Das Spektrum von $ {\Delta _p}$ auf offenen Riemannschen Mannigfaltigkeiten mit beschränkter Schmitt-krümmung und beschranktem Kern-Tensor, preprint.
  • [5] Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 0433502
  • [6] M. Gromov, Paul Lévy's isoperimetric inequality, preprint.
  • [7] Helmut Kaul, Schranken für die Christoffelsymbole, Manuscripta Math. 19 (1976), no. 3, 261–273. MR 0433351
  • [8] Jürgen Kern, Das Pinchingproblem in Fastriemannschen Finslerschen Mannigfaltigkeiten, Manuscripta Math. 4 (1971), 341–350 (German, with English summary). MR 0290322
  • [9] D. B. Ray and I. M. Singer, 𝑅-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971), 145–210. MR 0295381
  • [10] G. de Rham, Variétés différentiables, Hermann, Paris, 1955.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25, 35P15, 58G30

Retrieve articles in all journals with MSC: 58G25, 35P15, 58G30

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society