On Littlewood's conjecture for univalent functions

Author:
D. H. Hamilton

Journal:
Proc. Amer. Math. Soc. **86** (1982), 32-36

MSC:
Primary 30C50; Secondary 30C55

DOI:
https://doi.org/10.1090/S0002-9939-1982-0663861-6

MathSciNet review:
663861

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The uniform asymptotic theory of functionals on is investigated. We prove that Littlewood's conjecture is equivalent to the asymptotic Bieberbach conjecture of Hayman.

**[1]**E. Bombieri,*On functions which are regular and univalent in the half plane*, Proc. London Math. Soc. (3)**14A**(1965), 47-50. MR**0185108 (32:2578)****[2]**-,*Two remarks on univalent functions*, Conference on Univalent Functions (Ann Arbor, Michigan, 1980).**[3]**J. Brown and D. H. Hamilton,*Quantitative versions of the Hayman asymptotic theorem*(to appear).**[4]**C. H. FitzGerald,*Quadratic inequalities and coefficient estimates for schlicht functions*, Arch. Rational Mech. Anal.**46**(1972), 356-368. MR**0335777 (49:557)****[5]**-,*Univalent functions with large late coefficients*(to appear).**[6]**D. H. Hamilton,*The equivalence of two weak type Bieberbach conjectures*, Math. Z. (to appear). MR**674271 (84d:30026)****[7]**-,*The dispersion of coefficients of univalent functions*, Trans. Amer. Math. Soc. (to appear). MR**684512 (84i:30023)****[8]**W. K. Hayman,*Multivalent functions*, Cambridge Univ. Press, New York, 1958. MR**0108586 (21:7302)****[9]**-,*Bounds for the large coefficients of univalent functions*, Ann. Acad. Sci. Fenn. Ser. AI Math.**250**(1958). MR**0096810 (20:3292)****[10]**J. E. Littlewood,*On inequalities in the theory of functions*, Proc. London Math. Soc. (2)**23**(1925), 481-519.**[11]**Z. Nehari,*On the coefficients of univalent functions*, Proc. Amer. Math. Soc.**8**(1957), 291-293. MR**0083569 (18:728c)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C50,
30C55

Retrieve articles in all journals with MSC: 30C50, 30C55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1982-0663861-6

Article copyright:
© Copyright 1982
American Mathematical Society