Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The minimal normal filter on $ P\sb{\kappa }\lambda $


Author: Donna M. Carr
Journal: Proc. Amer. Math. Soc. 86 (1982), 316-320
MSC: Primary 03E05; Secondary 04A20
DOI: https://doi.org/10.1090/S0002-9939-1982-0667297-3
MathSciNet review: 667297
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \kappa $ be an uncountable regular cardinal, let $ C{F_\kappa }$ be the cub filter on $ \kappa $ and let $ FS{F_\kappa }$ be the filter generated by $ \{ \{ \beta < \kappa :\beta > \alpha \} :\alpha < \kappa \} $. It is well known that $ C{F_k}$ is normal, that $ C{F_\kappa } = \Delta FS{F_\kappa }$ and hence that every normal filter on $ \kappa $ extends $ C{F_\kappa }$.

Jech extended some of these results to the context of $ {P_\kappa }\lambda $. Let $ \lambda $ be a cardinal $ \geqslant \kappa $ and let $ C{F_{\kappa \lambda }}$ denote the cub filter on $ {P_{\kappa \lambda }}$ as defined by Jech; he showed that $ C{F_{\kappa \lambda }}$ is normal and that every normal ultrafilter on $ {P_{\kappa \lambda }}$ extends $ C{F_{\kappa \lambda }}$.

In this paper we extend these results further. In particular, we show that $ {F_{\kappa \lambda }} = \Delta \Delta FS{F_{\kappa \lambda }}$ where $ FS{F_{\kappa \lambda }}$ is the filter generated by $ \{ \{ y \in {P_\kappa }\lambda :x \subset y\} :x \in {P_\kappa }\lambda \} $, and that every normal filter on $ {P_\kappa }\lambda $ extends $ CF{P_{\kappa \lambda }}$.

Finally, we show that for any $ \lambda \geqslant \kappa $ and any ideal $ I$ on $ {P_\kappa }\lambda ,\nabla \nabla \nabla I = \nabla \nabla I$


References [Enhancements On Off] (What's this?)

  • [1] J. E. Baumgartner, A. D. Taylor and S. Wagon, Structural properties of ideals, Dissertationes Math. (Rozprawy Mat.) (to appear). MR 687276 (84f:04007)
  • [2] D. M. Carr, The minimal normal ideal on $ {P_\kappa }\lambda $, Abstracts Amer. Math. Soc. 1 (1980), 394.
  • [3] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198. MR 0325397 (48:3744)
  • [4] -, unpublished, 1978.
  • [5] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279-285. MR 0327518 (48:5860)
  • [6] T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359. MR 0357121 (50:9589)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E05, 04A20

Retrieve articles in all journals with MSC: 03E05, 04A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0667297-3
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society