Conjugacy separability of certain relator groups
Author:
C. Y. Tang
Journal:
Proc. Amer. Math. Soc. 86 (1982), 379384
MSC:
Primary 20E26; Secondary 20F05
MathSciNet review:
671198
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let where , , are integers. We show that groups of this type are conjugacy separable.
 [1]
R.
B. J. T. Allenby, L.
E. Moser, and C.
Y. Tang, The residual finiteness of certain
onerelator groups, Proc. Amer. Math. Soc.
78 (1980), no. 1,
8–10. MR
548072 (80k:20032), http://dx.doi.org/10.1090/S00029939198005480725
 [2]
R.
B. J. T. Allenby and C.
Y. Tang, The residual finiteness of some onerelator groups with
torsion, J. Algebra 71 (1981), no. 1,
132–140. MR
627429 (84e:20038a), http://dx.doi.org/10.1016/00218693(81)901101
 [3]
R.
B. J. T. Allenby and C.
Y. Tang, Residually finite onerelator groups with torsion,
Arch. Math. (Basel) 37 (1981), no. 2, 97–105.
MR 640794
(84e:20038b), http://dx.doi.org/10.1007/BF01234332
 [4]
S. M. Armstrong, One relator groups with nontrivial centre, M. Phil. Thesis, Queen Mary College, 1977.
 [5]
Benjamin
Baumslag and Frank
Levin, A class of onerelator groups with torsion, Arch. Math.
(Basel) 33 (1979/80), no. 3, 209–215. MR 559539
(81f:20038), http://dx.doi.org/10.1007/BF01222748
 [6]
Gilbert
Baumslag, Residually finite onerelator
groups, Bull. Amer. Math. Soc. 73 (1967), 618–620. MR 0212078
(35 #2953), http://dx.doi.org/10.1090/S000299041967117993
 [7]
Gilbert
Baumslag and Donald
Solitar, Some twogenerator onerelator
nonHopfian groups, Bull. Amer. Math. Soc.
68 (1962),
199–201. MR 0142635
(26 #204), http://dx.doi.org/10.1090/S000299041962107459
 [8]
A.
M. Brunner and R.
G. Burns, Groups in which every finitely generated subgroup is
almost a free factor, Canad. J. Math. 31 (1979),
no. 6, 1329–1338. MR 553165
(81i:20027a), http://dx.doi.org/10.4153/CJM19791102
 [9]
Joan
L. Dyer, Separating conjugates in amalgamated free products and HNN
extensions, J. Austral. Math. Soc. Ser. A 29 (1980),
no. 1, 35–51. MR 566274
(81f:20033)
 [10]
J.
Fischer, A.
Karrass, and D.
Solitar, On onerelator groups having elements
of finite order, Proc. Amer. Math. Soc. 33 (1972), 297–301.
MR
0311780 (47 #342), http://dx.doi.org/10.1090/S00029939197203117800
 [11]
Seymour
Lipschutz, Generalization of Dehn’s result
on the conjugacy problem, Proc. Amer. math.
Soc. 17 (1966),
759–762. MR 0197541
(33 #5706), http://dx.doi.org/10.1090/S00029939196601975411
 [12]
W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
 [13]
A.
Włodzimierz Mostowski, On the decidability of some problems
in special classes of groups, Fund. Math. 59 (1966),
123–135. MR 0224693
(37 #292)
 [14]
B.
B. Newman, Some results on onerelator
groups, Bull. Amer. Math. Soc. 74 (1968), 568–571. MR 0222152
(36 #5204), http://dx.doi.org/10.1090/S000299041968120129
 [15]
Peter
F. Stebe, Conjugacy separability of certain free
products with amalgamation, Trans. Amer. Math.
Soc. 156 (1971),
119–129. MR 0274597
(43 #360), http://dx.doi.org/10.1090/S00029947197102745975
 [1]
 R. B. J. T. Allenby, L. E. Moser and C. Y. Tang, The residual finiteness of certain onerelator groups, Proc. Amer. Math. Soc. 78 (1980), 810. MR 548072 (80k:20032)
 [2]
 R. B. J. T. Allenby and C. Y. Tang, The residual finiteness of some onerelator groups with torsion, J. Algebra 71 (1981), 132140. MR 627429 (84e:20038a)
 [3]
 , Residually finite onerelator groups with torsion, Arch. Math. (Basel) 37 (1981), 97105. MR 640794 (84e:20038b)
 [4]
 S. M. Armstrong, One relator groups with nontrivial centre, M. Phil. Thesis, Queen Mary College, 1977.
 [5]
 B. Baumslag and F. Levin, A class of onerelator groups with torsion, Arch. Math. (Basel) 33 (1979), 209215. MR 559539 (81f:20038)
 [6]
 G. Baumslag, Residually finite onerelator groups, Bull. Amer. Math. Soc. 73 (1967), 618620. MR 0212078 (35:2953)
 [7]
 G. Baumslag and D. Solitar, Some twogenerator onerelator nonHopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199201. MR 0142635 (26:204)
 [8]
 A. M. Brunner and R. G. Burns, Groups in which every finitely generated subgroup is almost a free factor, Canad. J. Math. 31 (1979), 13291338. MR 553165 (81i:20027a)
 [9]
 J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions, J. Austral. Math. Soc. Ser. A 29 (1980), 3551. MR 566274 (81f:20033)
 [10]
 J. Fischer, A Karrass and D. Solitar, On onerelator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972), 297301. MR 0311780 (47:342)
 [11]
 S. Lipschutz, Generalization of Dehn's result on the conjugacy problem, Proc. Amer. Math. Soc. 17 (1966), 759762. MR 0197541 (33:5706)
 [12]
 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
 [13]
 A. W. Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123135. MR 0224693 (37:292)
 [14]
 B. B. Newman, Some results on onerelator groups, Bull. Amer. Math. Soc. 74 (1968), 568571. MR 0222152 (36:5204)
 [15]
 P. Stebe, Conjugacy separability of certain free products with amalgamations, Trans. Amer. Math. Soc. 156 (1971), 119129. MR 0274597 (43:360)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20E26,
20F05
Retrieve articles in all journals
with MSC:
20E26,
20F05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198206711984
PII:
S 00029939(1982)06711984
Keywords:
Conjugacy separable,
conjugacy distinguishable,
residually finite,
generalized free product,
potent,
separable,
M. Hall groups
Article copyright:
© Copyright 1982
American Mathematical Society
