Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Conjugacy separability of certain $ 1$-relator groups


Author: C. Y. Tang
Journal: Proc. Amer. Math. Soc. 86 (1982), 379-384
MSC: Primary 20E26; Secondary 20F05
DOI: https://doi.org/10.1090/S0002-9939-1982-0671198-4
MathSciNet review: 671198
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G = \left\langle {a,b;{{({a^l}{b^m})}^t}} \right\rangle $ where $ l$, $ m$, $ t$ are integers. We show that groups of this type are conjugacy separable.


References [Enhancements On Off] (What's this?)

  • [1] R. B. J. T. Allenby, L. E. Moser and C. Y. Tang, The residual finiteness of certain one-relator groups, Proc. Amer. Math. Soc. 78 (1980), 8-10. MR 548072 (80k:20032)
  • [2] R. B. J. T. Allenby and C. Y. Tang, The residual finiteness of some one-relator groups with torsion, J. Algebra 71 (1981), 132-140. MR 627429 (84e:20038a)
  • [3] -, Residually finite one-relator groups with torsion, Arch. Math. (Basel) 37 (1981), 97-105. MR 640794 (84e:20038b)
  • [4] S. M. Armstrong, One relator groups with non-trivial centre, M. Phil. Thesis, Queen Mary College, 1977.
  • [5] B. Baumslag and F. Levin, A class of one-relator groups with torsion, Arch. Math. (Basel) 33 (1979), 209-215. MR 559539 (81f:20038)
  • [6] G. Baumslag, Residually finite one-relator groups, Bull. Amer. Math. Soc. 73 (1967), 618-620. MR 0212078 (35:2953)
  • [7] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201. MR 0142635 (26:204)
  • [8] A. M. Brunner and R. G. Burns, Groups in which every finitely generated subgroup is almost a free factor, Canad. J. Math. 31 (1979), 1329-1338. MR 553165 (81i:20027a)
  • [9] J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions, J. Austral. Math. Soc. Ser. A 29 (1980), 35-51. MR 566274 (81f:20033)
  • [10] J. Fischer, A Karrass and D. Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972), 297-301. MR 0311780 (47:342)
  • [11] S. Lipschutz, Generalization of Dehn's result on the conjugacy problem, Proc. Amer. Math. Soc. 17 (1966), 759-762. MR 0197541 (33:5706)
  • [12] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
  • [13] A. W. Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123-135. MR 0224693 (37:292)
  • [14] B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568-571. MR 0222152 (36:5204)
  • [15] P. Stebe, Conjugacy separability of certain free products with amalgamations, Trans. Amer. Math. Soc. 156 (1971), 119-129. MR 0274597 (43:360)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20E26, 20F05

Retrieve articles in all journals with MSC: 20E26, 20F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0671198-4
Keywords: Conjugacy separable, conjugacy distinguishable, residually finite, generalized free product, potent, $ H$-separable, M. Hall groups
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society