Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite $ 2$-complexes with infinitely-generated groups of self-homotopy-equivalences


Authors: A. M. Brunner and J. G. Ratcliffe
Journal: Proc. Amer. Math. Soc. 86 (1982), 525-530
MSC: Primary 57M20; Secondary 55P10
DOI: https://doi.org/10.1090/S0002-9939-1982-0671229-1
MathSciNet review: 671229
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Examples of finite $ 2$-dimensional aspherical cell complexes are given whose group of homotopy classes of self-homotopy-equivalences is infinitely generated.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Four applications of the self-obstruction invariants, J. London Math. Soc. 31 (1956), 148-159. MR 0085507 (19:52a)
  • [2] S. Bachmuth and H. Y. Mochizuki, $ {E_2} \ne {\text{S}}{{\text{L}}_2}$ for most Laurent polynomial rings, Preprint, Univ. of California at Santa Barbara, 1981. MR 1123970 (92h:01044)
  • [3] A. M. Brunner, On a class of one-relator groups, Canad. J. Math. 32 (1980), 414-420. MR 571934 (81g:20064)
  • [4] W. H. Cockcroft, On two-dimensional aspherical complexes, Proc. London Math. Soc. 4 (1954), 375-384. MR 0063042 (16:62b)
  • [5] E. Dyer and A. T. Vasquez, Some small aspherical spaces, J. Austral. Math. Soc. 16 (1973), 332-352. MR 0341476 (49:6227)
  • [6] G. Higman, The units of group-rings, Proc. London Math. Soc. 46 (1940), 231-248. MR 0002137 (2:5b)
  • [7] S. Jajodia, On $ 2$-dimensional $ CW$-complexes with a single $ 2$-cell, Pacific J. Math. 80 (1979), 191-203. MR 534708 (80k:57005)
  • [8] J. Lewin, A finitely presented group whose group of automorphisms is infinitely generated, J. London Math. Soc. 42 (1967), 610-613. MR 0222148 (36:5200)
  • [9] R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. 52 (1950), 650-665. MR 0047046 (13:819b)
  • [10] S. Mac Lane and J. H. C. Whitehead, On the $ 3$-type of a complex, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 41-48.
  • [11] D. McCullough, Finite aspherical complexes with infinitely-generated groups of self-homotopy-equivalences, Proc. Amer. Math. Soc. 80 (1980), 337-340. MR 577770 (81k:55008)
  • [12] J. G. Ratcliffe, Crossed extensions, Trans. Amer. Math. Soc. 257 (1980), 73-89. MR 549155 (80m:20042)
  • [13] -, Free and projective crossed modules, J. London Math. Soc. 22 (1980), 66-74. MR 579810 (81h:18012)
  • [14] B. Schellenberg, The group of homotopy self-equivalences of some compact $ CW$-complexes, Math. Ann. 200 (1973), 253-266. MR 0326719 (48:5062)
  • [15] -, On the self-equivalences of a space with non-cyclic fundamental group, Math. Ann. 205 (1973), 333-344. MR 0324689 (48:3039)
  • [16] O. Schreier, Über die Gruppen $ {A^a}{B^b} = 1$, Abh. Math. Sem. Univ. Hamburg 3 (1924), 167-169.
  • [17] J.-P. Serre, Cohomologie des groupes discrets, Prospects in Mathematics, Ann. of Math. Studies, no. 70, Princeton Univ. Press, Princeton, N. J., pp. 77-132. MR 0385006 (52:5876)
  • [18] A. J. Sieradski, Combinatorial isomorphisms and combinatorial homotopy equivalences, J. Pure Appl. Algebra 7 (1976), 59-95. MR 0405434 (53:9227)
  • [19] E. Specker, Die erste Cohomologiegruppe von Überlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv. 23 (1949), 303-333. MR 0033520 (11:451a)
  • [20] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math., vol. 61, Springer-Verlag, New York, Heidelberg and Berlin, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M20, 55P10

Retrieve articles in all journals with MSC: 57M20, 55P10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0671229-1
Keywords: self-homotopy-equivalence, $ 2$-dimensional complex, infinitely-generated group, aspherical complex, automorphism group, 1st $ k$-invariant
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society