Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sheaf theoretic cohomological dimension and finitistic spaces


Author: Satya Deo
Journal: Proc. Amer. Math. Soc. 86 (1982), 545-550
MSC: Primary 55N30; Secondary 54F45, 55M10
DOI: https://doi.org/10.1090/S0002-9939-1982-0671233-3
MathSciNet review: 671233
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a topological $ n$-manifold $ X$, we proved earlier [7] that $ {\text{Di}}{{\text{m}}_{\mathbf{Z}}}(X) = n + 1$, if $ n > 0$; and, for a zero-dimensional manifold (discrete space) we observed that $ {\text{Di}}{{\text{m}}_{\mathbf{Z}}}(X) = 0$. The question was later raised as to what are those paracompact spaces, besides discrete one, for which $ {\text{Di}}{{\text{m}}_{\mathbf{Z}}}(X) = 0$. In this paper we prove that there is none, i.e., if $ X$ is not discrete then $ {\text{Di}}{{\text{m}}_{\mathbf{Z}}}(X) > 0$. Another question which cropped up only recently in the cohomological theory of topological transformation groups is whether or not there exists a finitistic space which is not of finite (sheaf theoretic) integral cohomological dimension. We show that this question is related to a famous unsolved problem of cohomological dimension theory.


References [Enhancements On Off] (What's this?)

  • [1] P. S. Alexandroff, Some old problems in homological dimension theory, Proc. Internat. Sympos. Topology Appl., Herceg-Novi, 1968, pp. 38-42. MR 0273607 (42:8485)
  • [2] G. E. Bredon, Sheaf theory, Mc-Graw Hill, New York, 1967. MR 0221500 (36:4552)
  • [3] -, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [4] A. Borel, et al., Seminar on transformation groups, Ann. of Math. Studies, No. 46, Princeton Univ. Press, Princeton, N. J., 1960. MR 0116341 (22:7129)
  • [5] H. Cartan, Seminar E.N.S., 1950-51.
  • [6] H. Cohen, A cohomological definition of dimension for locally compact spaces, Duke Math. J. 21 (1954), 209-224. MR 0066637 (16:609b)
  • [7] S. Deo, Cohomological dimension of a $ n$-manifold is $ n + 1$, Pacific J. Math. 67 (1976), 155-160. MR 0431184 (55:4186)
  • [8] S. Deo and A. S. Shukla, Cohomological dimension and the sum theorems (submitted).
  • [9] S. Deo and H. S. Tripathi, Compact Lie group actions on finitistic spaces, Topology (to appear). MR 670743 (83k:54042)
  • [10] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York and Berlin, 1960. MR 0116199 (22:6994)
  • [11] Wu-Yi Hsiang, Cohomological theory of topological transformation groups, Springer-Verlag, New York and Berlin, 1975. MR 0423384 (54:11363)
  • [12] K. Nagami, Dimension theory, Academic Press, New York, 1972. MR 0271918 (42:6799)
  • [13] A. Okuyama, On cohomological dimension of paracompact Hausdorff spaces, Proc. Japan Acad. 38 (1962), 489-494. MR 0150770 (27:757)
  • [14] R. Oliver, A proof of Conner conjecture, Ann. of Math. (2) 103 (1976), 637-644. MR 0415650 (54:3730)
  • [15] R. G. Swan, A new method in fixed point theory, Comment. Math. Helv. 34 (1960), 1-16. MR 0115176 (22:5978)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N30, 54F45, 55M10

Retrieve articles in all journals with MSC: 55N30, 54F45, 55M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0671233-3
Keywords: Sheaves, family of supports, sheaf theoretic cohomological dimension, real-compactness, finitistic spaces
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society