Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Inequalities of Gauss-Bonnet type for a convex domain


Author: B. V. Dekster
Journal: Proc. Amer. Math. Soc. 86 (1982), 632-637
MSC: Primary 53C20; Secondary 53C40, 53C45
DOI: https://doi.org/10.1090/S0002-9939-1982-0674095-3
MathSciNet review: 674095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ N$ be a compact convex $ n$-dimensional Riemannian manifold with a boundary $ \partial N$ having normal curvatures $ \geqslant \kappa > 0$. Suppose the sectional curvature $ > - {\kappa ^2}$ in $ N$. Let $ H$ be the integral mean curvature of $ \partial N$, $ V$ be the volume of $ N$, $ {k_{sc}}$ be the scalar curvature and $ {\bar k_R}(p)$, $ p \in N$, be the maximum Ricci curvature at $ p$. Then

$\displaystyle H \geqslant \frac{{n - 2}} {2}{\kappa ^2}V - \frac{1} {{2(n - 1)}... ...H \geqslant (n - 2){\kappa ^2}V - \frac{1} {{n - 1}}\int_N {{{\bar k}_R}\;dV.} $

Let $ {N_ - }$ denote $ N$ with nonpositive sectional curvature. Let $ G$ be the integral Gauss curvature of $ \partial {N_ - }$. Then $ G \geqslant - {\kappa ^{n - 2}}\int_{N - } {{{\bar k}_R}\;dV} $. These three estimates are sharp. For a ball in $ 3$-dimensional hyperbolic space, the ratio of the right-hand part of each estimate to its left-hand part (i.e. $ V({\kappa ^2} + 3)/2H$, $ V({\kappa ^2} + 1)/H$ and $ 2\kappa V/G$ respectively) approaches 1 as the $ {\operatorname{radius}} \to \infty $. The same ratios for the estimates

$\displaystyle H \geqslant - \frac{1} {{2(n - 1)}}\int_N {{k_{sc}}\;} dV\quad {\text{and}}\quad H \geqslant - \frac{1} {{n - 1}}\int_N {{{\bar k}_R}\;dV} $

(rougher ones but without $ \kappa $) approach $ \tfrac{3} {4}$ and $ \tfrac{1} {2}$ respectively.

References [Enhancements On Off] (What's this?)

  • [1] B. V. Dekster, An inequality of the isoperimetric type for a domain in a Riemannian space, Math. USSR-Sb. 19 (1973), 257-274. MR 0362159 (50:14601)
  • [2] -, Estimates of the length of a curve, J. Differential Geometry 12 (1977), 99-115. MR 0470906 (57:10650)
  • [3] The volume of a slightly curved submanifold in a convex region, Proc. Amer. Math. Soc. 68 (1978), 203-208. MR 0474147 (57:13797)
  • [4] -, Upper estimates of the length of a curve in a Riemannian manifold with boundary, J. Differential Geometry 14 (1979), 149.-166. MR 587544 (82b:53051)
  • [5] D. Gromoll, W. Klingenberg and W. Meyer, Riemannische Geometrie im Grossen, Lecture Notes in Math., vol. 55, Spring-Verlag, Berlin and New York, 1968. MR 0229177 (37:4751)
  • [6] H. Rund, Invariant theory of variational problems on subspaces of a Riemannian manifold, Hamburger Mathematische Einzelschriften, Neue Folge, Heft 5, Vandenhoeck and Ruprecht, Göttingen, 1971. MR 0343149 (49:7893)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20, 53C40, 53C45

Retrieve articles in all journals with MSC: 53C20, 53C40, 53C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0674095-3
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society