Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Noninvertible retracts


Author: Joe Yanik
Journal: Proc. Amer. Math. Soc. 87 (1983), 29-32
MSC: Primary 13F20; Secondary 13D15
DOI: https://doi.org/10.1090/S0002-9939-1983-0677224-1
MathSciNet review: 677224
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We demonstrate that if $ P$ is a projective $ R[X]$-module that is not stably extended from an $ R$-module, then the symmetric algebra of $ P$ over $ R[X]$ is a retract of a polynomial ring over $ R$, but is not an invertible $ R$-algebra. Hence, there are noninvertible retracts over a quite general class of rings.


References [Enhancements On Off] (What's this?)

  • [B] H. Bass, Algebraic $ K$-theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [Bo] N. Bourbaki, Algebra. I, Hermann, Paris, 1970.
  • [C] E. H. Connell, A $ K$-theory for the category of projective algebras, J. Pure Appl. Algebra 5 (1974), 281-292. MR 0384803 (52:5675)
  • [E-H] P. Eakin and W. Heinzer, A cancellation problem for rings, Commutative Algebra, Lecture Notes in Math., Vol. 311, Springer-Verlag, Berlin and New York, 1973. MR 0349664 (50:2157)
  • [G] C. Greither, Seminormality, projective algebras, and invertible algebras, J. Algebra 70 (1981), 316-337. MR 623811 (82h:13005)
  • [M] H. Matsumura, Commutative algebra, 2nd ed., Benjamin & Cumming, Reading, Mass., 1980. MR 575344 (82i:13003)
  • [W] C. A. Weibel, $ K$-theory and analytic isomorphism, Invent. Math. 61 (1980), 177-197. MR 590161 (83b:13011)
  • [Y] J. Yanik, Projective algebras, J. Pure Appl. Algebra 21 (1981), 339-358. MR 617139 (84h:13006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F20, 13D15

Retrieve articles in all journals with MSC: 13F20, 13D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0677224-1
Keywords: Retract, invertible algebra, symmetric algebra, module of differentials
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society