Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynômes de Jacobi, interprétation combinatoire et fonction génératrice


Authors: Dominique Foata and Pierre Leroux
Journal: Proc. Amer. Math. Soc. 87 (1983), 47-53
MSC: Primary 33A65; Secondary 05A15
DOI: https://doi.org/10.1090/S0002-9939-1983-0677229-0
MathSciNet review: 677229
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This classical generating function for the Jacobi polynomials is derived by purely combinatorial methods.


References [Enhancements On Off] (What's this?)

  • [1] R. Askey, Jacobi's generating function for Jacobi polynomials, Proc. Amer. Math. Soc. 71 (1978), 243-246. MR 0486693 (58:6394)
  • [2] E. A. Bender and J. R. Goldman, Enumerative uses of generating functions, Indiana Univ. Math. J. 20 (1971), 753-765. MR 0270931 (42:5814)
  • [3] L. Carlitz, The generating function for the Jacobi polynomials, Rend. Sem. Mat. Univ. Padova 38 (1967), 86-88. MR 0222357 (36:5409)
  • [4] L. Comtet, Analyse combinatoire, Tome I, Presses Universitaires de France, Paris, 1970; English ed., Advanced combinatorics, Reidel, Dordrecht and Boston, 1974. MR 0262087 (41:6697)
  • [5] D. Foata, La série génératrice exponentielle dans les problèmes d ' énumération, Presses de l'Université de Montréal, Montréal, 1974. MR 0505546 (58:21646)
  • [6] D. Foata and V. Strehl, Combinatorics of Laguerre polynomials, prépublication, Univ. Strasbourg, 1981.
  • [7] A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), 1-82. MR 633783 (84d:05025)
  • [8] G. Labelle, Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange, Adv. in Math. 42 (1981), 217-247. MR 642392 (83e:05016)
  • [9] E. D. Rainville, Special functions, Chelsea, New York, 1960. MR 0107725 (21:6447)
  • [10] J. Riordan, An introduction to combinatorial analysis, Wiley, New York, 1958. MR 0096594 (20:3077)
  • [11] R. P. Stanley, Generating functions, Studies in Combinatorics (G. C. Rota, ed.), Math. Assoc. Amer. Studies in Math., vol. 17, 1978, pp. 100-141. MR 513004 (81i:05015)
  • [12] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939 (second printing of the fourth edition: 1978).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A65, 05A15

Retrieve articles in all journals with MSC: 33A65, 05A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0677229-0
Keywords: Jacobi polynomials, generating functions, endofunctions, arborescences = rooted trees, Catalan numbers
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society