Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Green's functions coupled to self-dual Maxwell fields


Author: Matthew L. Ginsberg
Journal: Proc. Amer. Math. Soc. 87 (1983), 137-143
MSC: Primary 81D25; Secondary 32L25, 53C05
MathSciNet review: 677249
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A twistor construction is given which gives an explicit form for the spin $ n/2$ propagators for massless fields coupled to a self-dual Maxwell field.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Green’s functions for self-dual four-manifolds, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 129–158. MR 634238 (83a:53029)
  • [2] M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–187. MR 598562 (82g:81049), http://dx.doi.org/10.1016/0375-9601(78)90141-X
  • [3] M. G. Eastwood, On non-projective twistor cohomology, Twistor Newsletter 10 (1980), 17.
  • [4] Michael G. Eastwood and Matthew L. Ginsberg, Duality in twistor theory, Duke Math. J. 48 (1981), no. 1, 177–196. MR 610183 (82k:32055)
  • [5] Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497 (83d:81052)
  • [6] S. Gasioriwicz, Elementary particle physics, Wiley, New York, 1966.
  • [7] M. L. Ginsberg, A cohomological approach to scattering theory, D. Phil. Thesis, Oxford, 1980.
  • [8] -, Coupled propagators, Twistor Newsletter 13 (1981), 14-15.
  • [9] -, Scattering theory and the geometry of multi-twistor spaces, Trans. Amer. Math. Soc. (to appear).
  • [10] Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII; Actualités Scientifiques et Industrielles, No. 1252. MR 0345092 (49 #9831)
  • [11] L. P. Hughston and Richard Samuel Ward (eds.), Advances in twistor theory, Research Notes in Mathematics, vol. 37, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 578487 (82e:83002)
  • [12] R. Penrose, Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366. MR 0216828 (35 #7657)
  • [13] -, The structure of space-time, In: Batelle rencontres, 1967, pp. 121-235; Benjamin, New York, 1968.
  • [14] -, Solutions of the zero-rest-mass equations, J. Mathematical Phys. 10 (1969), 38-39.
  • [15] -, Twistor theory, its aims and achievements, In: Quantum gravity: an Oxford symposium (eds. C. J. Isham, R. Penrose, D. W. Sciama), Clarendon Press. Oxford, 1975, pp. 268-407.
  • [16] R. S. Ward, Curved twistor spaces, D. Phil. Thesis, Oxford, 1977.
  • [17] -, On self-dual gauge fields, Phys. Lett. A. 61 (1977), 81-82.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 81D25, 32L25, 53C05

Retrieve articles in all journals with MSC: 81D25, 32L25, 53C05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1983-0677249-6
PII: S 0002-9939(1983)0677249-6
Article copyright: © Copyright 1983 American Mathematical Society