Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A cycle is the fundamental class of an Euler space

Authors: R. Benedetti and M. Dedò
Journal: Proc. Amer. Math. Soc. 87 (1983), 169-174
MSC: Primary 57Q99
MathSciNet review: 677255
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every cycle in a closed P.L. manifold $ M$ can be regarded as the fundamental class of an Euler subpolyhedron of $ M$.

References [Enhancements On Off] (What's this?)

  • [A] E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc. 205 (1975), 341-359. MR 0358829 (50:11288)
  • [BT] R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real algebraic vector bundles and cycles, Lecture Notes, Springer, Berlin and New York (to appear). MR 683134 (85a:14018)
  • [RS] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Math. und ihrer Grenzgebiete, Band 69, Springer-Verlag. Berlin and New York, 1972. MR 0350744 (50:3236)
  • [S] D. Sullivan, Combinatorial invariants of analytic spaces, Proc. Liverpool Singularities Symposium. I, Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971. MR 0278333 (43:4063)
  • [BD] R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism (to appear). MR 766294 (86h:57031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q99

Retrieve articles in all journals with MSC: 57Q99

Additional Information

Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society