Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some properties of Borel subgroups of real numbers


Author: Barthélemy Le Gac
Journal: Proc. Amer. Math. Soc. 87 (1983), 677-680
MSC: Primary 28C10; Secondary 04A15, 22A05, 54H05
DOI: https://doi.org/10.1090/S0002-9939-1983-0687640-X
MathSciNet review: 687640
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: As a consequence of Souslin's theorem, we obtain the following; if $ G$ and $ H$ both are analytic subgroups of $ {\mathbf{R}}$ such that $ G + H = {\mathbf{R}}$ and $ G \cap H = \{ 0\} $, then either $ G = {\mathbf{R}}$ or $ G = \{ 0\} $. Next we obtain some measure and topological properties for uncountable proper Borel subgroups of reals. Finally, we prove that if $ E$ is a vector subspacc of $ {\mathbf{R}}$ over the rationals which admits an uncountable Borel basis, then there exists no Polish topology on $ E$ such that $ E$ is a topological group with the given Borel structure generated by the open sets.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
  • [2] A. Białynicki-Birula, On subfields of countable codimension, Proc. Amer. Math. Soc. 35 (1972), 354-356. MR 0304357 (46:3492)
  • [3] N. Bourbaki, Topologie générale, 2nd ed., Ch. IX, Hermann, Paris, 1958. MR 0173226 (30:3439)
  • [4] P. Erdös, Some remarks on subgroups of real numbers, Colloq. Math. 42 (1979), 119-120. MR 567551 (82c:04004)
  • [5] P. Erdös, K. Kunen and R. Daniel Mauldin, Some additive properties of real numbers, Fund. Math. 113 (1981), 187-199. MR 641304 (85f:04003)
  • [6] A. Guichardet, Analyse harmonique commutative, Dunod, Paris, 1968. MR 0240554 (39:1901)
  • [7] Robert R. Kallman, Certain quotient spaces are countably separated. III, J. Funct. Anal. 22 (1976), 225-241. MR 0417329 (54:5385)
  • [8] N. Lusin, Les ensembles analytiques, 2nd ed., Chelsea, New York, 1972.
  • [9] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR 0089999 (19:752b)
  • [10] R. Daniel Mauldin, On the Borel subspaces of algebraic structures, Indiana Univ. Math. J. 29 (1980), 261-265. MR 563210 (81i:54027)
  • [11] J. Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165-169. MR 0224762 (37:361)
  • [12] J. von Neumann, System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141. MR 1512442
  • [13] W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 104-111.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C10, 04A15, 22A05, 54H05

Retrieve articles in all journals with MSC: 28C10, 04A15, 22A05, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0687640-X
Keywords: Borel subgroups of real numbers, analytic sets, Souslin's theorem, quasiinvariant measures, topological groups, locally compact and Polish topologies, vector subspaces of $ {\mathbf{R}}$ over the rationals
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society