Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Matrix semigroups


Author: Mohan S. Putcha
Journal: Proc. Amer. Math. Soc. 88 (1983), 386-390
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9939-1983-0699399-0
MathSciNet review: 699399
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a semigroup of matrices over a field such that a power of each element lies in a subgroup (i.e., each element has a Drazin inverse within the semigroup). The main theorem of this paper is that there exist ideals $ {I_0}, \ldots ,{I_t}$ of $ S$ such that $ {I_0} \subseteq \cdots \subseteq {I_t} = S$, $ {I_0}$ is completely simple, and each Rees factor semigroup $ {I_k}/{I_{k - 1}}$, $ k = 1, \ldots ,t$, is either completely 0-simple or else a nilpotent semigroup. The basic technique is to study the Zariski closure of $ S$, which is a linear algebraic semigroup.


References [Enhancements On Off] (What's this?)

  • [1] G. Azumaya, Strongly $ \pi $-regular rings, J. Fac. Sci. Hokkaido Univ. 13 (1954), 34-39. MR 0067864 (16:788e)
  • [2] W. E. Clark, Remarks on the kernel of a matrix semigroup, Czechoslovak Math. J. 15(90) (1965), 305-310. MR 0177047 (31:1311)
  • [3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 0132791 (24:A2627)
  • [4] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 7 (1958), 506-514. MR 0098762 (20:5217)
  • [5] C. Faith, Algebra. II. Ring theory, Springer-Verlag, Berlin and New York, 1976. MR 0427349 (55:383)
  • [6] W. D. Munn, Pseudo-inverses in semigroups, Proc. Cambridge Philos. Soc. 57 (1961), 247-250. MR 0121410 (22:12148)
  • [7] M. S. Putcha, On linear algebraic semigroups, Trans. Amer. Math. Soc. 259 (1980), 457-469. MR 567091 (81i:20087)
  • [8] -, On linear algebraic semigroups. II, Trans. Amer. Math. Soc. 259 (1980), 471-491.
  • [9] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1977. MR 0447223 (56:5538)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1983-0699399-0
Keywords: Matrix semigroup, algebraic semigroup, nil, nilpotent, chain conditions
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society