Gradient method for nondensely defined closed unbounded linear operators
Authors:
Sung J. Lee and M. Zuhair Nashed
Journal:
Proc. Amer. Math. Soc. 88 (1983), 429435
MSC:
Primary 47A50; Secondary 65J10
MathSciNet review:
699408
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The paper establishes the convergence of the steepest descent method for leastsquares solutions of operator equations in Hilbert spaces for any (nondensely defined, unbounded) closed linear operator with closed range. This is done by using a graph topology, an explicit graph topology adjoint, and existing theory of steepest descent for bounded linear operators.
 [1]
Richard
Arens, Operational calculus of linear relations, Pacific J.
Math. 11 (1961), 9–23. MR 0123188
(23 #A517)
 [2]
Earl
A. Coddington and Aalt
Dijksma, Adjoint subspaces in Banach spaces, with applications to
ordinary differential subspaces, Ann. Mat. Pura Appl. (4)
118 (1978), 1–118. MR 533601
(81k:47036), http://dx.doi.org/10.1007/BF02415124
 [3]
Magnus
R. Hestenes, Relative selfadjoint operators in Hilbert space,
Pacific J. Math. 11 (1961), 1315–1357. MR 0136996
(25 #456)
 [4]
J.
W. Jerome and L.
L. Schumaker, On 𝐿𝑔splines, J. Approximation
Theory 2 (1969), 29–49. MR 0241864
(39 #3201)
 [5]
W.
J. Kammerer and M.
Z. Nashed, Steepest descent for singular linear operators with
nonclosed range., Applicable Anal. 1 (1971),
no. 2, 143–159. MR 0290134
(44 #7319)
 [6]
W.
J. Kammerer and M.
Z. Nashed, Iterative methods for best approximate solutions of
linear integral equations of the first and second kinds, J. Math.
Anal. Appl. 40 (1972), 547–573. MR 0320677
(47 #9213)
 [7]
L.
V. Kantorovich and G.
P. Akilov, Functional analysis in normed spaces, Translated
from the Russian by D. E. Brown. Edited by A. P. Robertson. International
Series of Monographs in Pure and Applied Mathematics, Vol. 46, The
Macmillan Co., New York, 1964. MR 0213845
(35 #4699)
 [8]
Lawrence
J. Lardy, A series representation for the generalized inverse of a
closed linear operator, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.
Mat. Natur. (8) 58 (1975), no. 2, 152–157
(English, with Italian summary). MR 0473881
(57 #13540)
 [9]
Sung
J. Lee, Boundary conditions for linear manifolds. I, J. Math.
Anal. Appl. 73 (1980), no. 2, 336–380. MR 563989
(84d:47003a), http://dx.doi.org/10.1016/0022247X(80)90284X
 [10]
S. J. Lee and M. Z. Nashed, Operator parts and generalized inverses of multivalued operators, with applications to ordinary differential subspaces (to appear).
 [11]
, Leastsquares solutions of multivalued linear operators, J. Approx. Theory (to appear).
 [12]
John
Locker, Weak steepest descent for linear boundary value
problems, Indiana Univ. Math. J. 25 (1976),
no. 6, 525–530. MR 0418456
(54 #6495)
 [13]
Th.
R. Lucas, A generalization of 𝐿splines, Numer. Math.
15 (1970), 359–370. MR 0269080
(42 #3976)
 [14]
S.
F. McCormick and G.
H. Rodrigue, A uniform approach to gradient methods for linear
operator equations, J. Math. Anal. Appl. 49 (1975),
275–285. MR 0377564
(51 #13735)
 [15]
M.
Z. Nashed, Steepest descent for singular linear operator
equations, SIAM J. Numer. Anal. 7 (1970),
358–362. MR 0269093
(42 #3989)
 [16]
M.
Zuhair Nashed, Perturbations and approximations for generalized
inverses and linear operator equations, Generalized inverses and
applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison,
Wis., 1973) Academic Press, New York, 1976, pp. 325–396. Publ.
Math. Res. Center Univ. Wisconsin, No. 32. MR 0500249
(58 #17923)
 [17]
W.
V. Petryshyn, Direct and iterative methods for the
solution of linear operator equations in Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 136–175. MR 0145651
(26 #3180), http://dx.doi.org/10.1090/S00029947196201456518
 [18]
W.
V. Petryshyn, On generalized inverses and on the uniform
convergence of (𝐼𝛽𝐾)ⁿ with application to
iterative methods, J. Math. Anal. Appl. 18 (1967),
417–439. MR 0208381
(34 #8191)
 [1]
 R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 923. MR 0123188 (23:A517)
 [2]
 E. A. Coddington and A. Dijksma, Adjoint subspaces in Banach spaces, with application to ordinary differential subspaces, Ann. Mat. Pura. Appl. 118 (1978), 1118. MR 533601 (81k:47036)
 [3]
 M. R. Hestenes, Relative selfadjoint operators in Hilbert spaces, Pacific J. Math. 11 (1961), 13151357. MR 0136996 (25:456)
 [4]
 J. W. Jerome and L. L. Schumaker, On splines, J. Approx. Theory 2 (1969), 2949. MR 0241864 (39:3201)
 [5]
 W. J. Kammerer and M. Z. Nashed, Steepest descent for singular linear operators with nonclosed range, Applicable Anal. 1 (1971), 143159. MR 0290134 (44:7319)
 [6]
 , Iterative methods for best approximate solutions of linear integral equations of the first and second kinds, J. Math. Anal. Appl. 40 (1972), 547573. MR 0320677 (47:9213)
 [7]
 L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Pergamon Press, London and New York, 1964. MR 0213845 (35:4699)
 [8]
 L. J. Lardy, A series representation for generalized inverse of a closed linear operator, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 152157. MR 0473881 (57:13540)
 [9]
 S. J. Lee, Boundary conditions for linear manifolds, I, J. Math. Anal. Appl. 73 (1980), 366380. MR 563989 (84d:47003a)
 [10]
 S. J. Lee and M. Z. Nashed, Operator parts and generalized inverses of multivalued operators, with applications to ordinary differential subspaces (to appear).
 [11]
 , Leastsquares solutions of multivalued linear operators, J. Approx. Theory (to appear).
 [12]
 J. Locker, Weak steepest descent for linear boundary value problems, Indiana Univ. Math. J. 25 (1976), 525530. MR 0418456 (54:6495)
 [13]
 T. R. Lucas, A generalization of splines, Numer. Math. 15 (1970), 359370. MR 0269080 (42:3976)
 [14]
 S. F. McCormick and G. H. Rodrigue, A uniform approach to gradient methods for linear operator equations, J. Math. Anal. Appl. 49 (1975), 275285. MR 0377564 (51:13735)
 [15]
 M. Z. Nashed, Steepest descent for singular linear operator equations, SIAM J. Numer. Anal. 7 (1970), 358362. MR 0269093 (42:3989)
 [16]
 , Perturbations and approximations for generalized inverses and linear operator equations, Generalized Inverses and Applications (M. Z. Nashed, ed.), Academic Press, New York, 1976, pp. 325396. MR 0500249 (58:17923)
 [17]
 W. V. Petryshyn, Direct and iterative methods for the solution of linear operator equations in Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 136175. MR 0145651 (26:3180)
 [18]
 , On generalized inverses and uniform convergence of with applications to iterative methods, J. Math. Anal. Appl. 18 (1967), 417439. MR 0208381 (34:8191)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47A50,
65J10
Retrieve articles in all journals
with MSC:
47A50,
65J10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198306994089
PII:
S 00029939(1983)06994089
Keywords:
Graph topology,
graph topology adjoint,
operator part,
gradient method,
steepest descent,
unbounded linear operator,
normal equations,
iterative methods,
generalized inverse of subspace
Article copyright:
© Copyright 1983
American Mathematical Society
