Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Cyclic algebras of small exponent

Author: J.-P. Tignol
Journal: Proc. Amer. Math. Soc. 89 (1983), 587-588
MSC: Primary 11R54; Secondary 13A20, 16A16
MathSciNet review: 718978
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every cyclic algebra of exponent $ n$ and degree $ mn$ over a field containing a primitive $ n$th root of unity is similar to a tensor product of at most $ m$ symbols of degree $ n$.

References [Enhancements On Off] (What's this?)

  • [1] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., vol. 24, Amer. Math. Soc., Providence, R. I., 1939. MR 0123587 (23:A912)
  • [2] A. S. Merkurjev and A. A. Suslin, $ K$-cohomology of Severi-Brauer varieties and norm residue homomorphism, preprint, 1981.
  • [3] J. Milnor, Introduction to algebraic $ K$-theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N. J., 1971. MR 0349811 (50:2304)
  • [4] S. Rosset and J. Tate, A reciprocity law for $ {K_2}$-traces, preprint, 1982.
  • [5] L. H. Rowen, Central simple algebras with involution viewed through centralizers, J. Algebra 63 (1980), 41-55. MR 568563 (81e:16011)
  • [6] J.-P. Serre, Corps locaux, Hermann, Paris, 1968. MR 0354618 (50:7096)
  • [7] E. Weiss, Cohomology of groups, Academic Press, New York, 1969. MR 0263900 (41:8499)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R54, 13A20, 16A16

Retrieve articles in all journals with MSC: 11R54, 13A20, 16A16

Additional Information

Keywords: Cyclic algebras, Brauer group of fields
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society