Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Decomposability preserving curvature operators with an application to Einstein manifolds


Authors: Michael R. Gabel and Stanley M. Zoltek
Journal: Proc. Amer. Math. Soc. 90 (1984), 303-308
MSC: Primary 53C25; Secondary 53B20
DOI: https://doi.org/10.1090/S0002-9939-1984-0727255-9
MathSciNet review: 727255
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we examine curvature operators that preserve decomposability. In particular, we prove that if at each point of an Einstein manifold $ M$ the sectional curvature operator is nonsingular and preserves decomposability, and the sectional curvature is either nonnegative or nonpositive, then $ M$ is a space of nonzero constant curvature.


References [Enhancements On Off] (What's this?)

  • [1] W.-L. Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. (2) 50 (1949), 32-67. MR 0028057 (10:396d)
  • [2] H. Jacobowitz, Curvature operators on the exterior algebra, Linear and Multilinear Algebra 7 (1979), 93-105. MR 529876 (80c:53048)
  • [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New [ill] 1963. MR 0152974 (27:2945)
  • [4] J. A. Schouten and D. J. Struik, On some properties of general manifolds relating to Einstein's theory of gravitation, Amer. J. Math. 43 (1921), 213-216. MR 1506446
  • [5] F. Schur, Über den Zusammenhang der Räume konstanter Krümmungsmasses mit den projectiven Raüumen, Math. Ann. 27 (1880), 537-567.
  • [6] T. Y. Thomas, Riemannian spaces of class one and their characterizations, Acta Math. 67 (1936), 169-211. MR 1555419
  • [7] J. Vilms, Factorization of curvature operators, Trans. Amer. Math. Soc. 260 (1980), 595-605. MR 574802 (81g:53034)
  • [8] -, Local isometric imbedding of Riemannian $ n$-manifolds into Euclidean $ \left( {n + 1} \right)$-space, J. Differential Geom. 12 (1977), 197-202. MR 0487854 (58:7452)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C25, 53B20

Retrieve articles in all journals with MSC: 53C25, 53B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0727255-9
Keywords: Curvature operator, decomposability preserving, Einstein manifold, constant curvature
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society