Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the problem of modified moments

Author: Rupert Lasser
Journal: Proc. Amer. Math. Soc. 90 (1984), 360-362
MSC: Primary 42C05; Secondary 44A60
MathSciNet review: 728348
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of modified moments is studied. Let $ \left( {{P_n}\left( x \right)} \right)_n^\infty = 0$ be an orthogonal polynomial sequence. Given a sequence $ \left( {{d_n}} \right)_n^\infty = 0$ of real numbers, does there exist a bounded nondecreasing function with infinitely many points of increase such that for every $ n \in {{\mathbf{N}}_0}$, $ {d_n} = \int_{ - \infty }^\infty {{P_n}} (x)d\mu (x)$? Is there any information about the support of $ \mu$? A necessary and sufficient condition for the existence of such a function $ \mu $ is given in terms of the positivity of certain determinants. For certain $ \left( {{P_n}\left( x \right)} \right)_{n = 0}^\infty $ a description of the support of $ \mu $ is established.

References [Enhancements On Off] (What's this?)

  • [1] C. Berg. Studies définies négatives et espaces de Dirichlet sur la sphère, Sém. Brelot-Choquet-Deny, Théorie du Potentiel, 13e année, 1969/70.
  • [2] C. Brezinski, Padé type approximation and general orthogonal polynomials, Birkhäuser, Basel, 1980. MR 561106 (82a:41017)
  • [3] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math. 18 (1975), 1-101. MR 0394034 (52:14840)
  • [4] S. Karlin and W. J. Studden, Tchebyscheff systems: with applications in analysis and statistics, Wiley Interscience, New York, 1966. MR 0204922 (34:4757)
  • [5] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. (7) (to appear). MR 735062 (85g:33009)
  • [6] C. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. II, Springer-Verlag, Berlin and New York, 1964.
  • [7] J. A. Shohat and J. D. Tamarkin, The problem of moments, Math. Surveys, no. 1, Amer. Math. Soc., Providence, R.I., 1943; reprinted 1983. MR 0008438 (5:5c)
  • [8] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C05, 44A60

Retrieve articles in all journals with MSC: 42C05, 44A60

Additional Information

Keywords: Moment problems, orthogonal polynomials
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society