Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the problem of modified moments


Author: Rupert Lasser
Journal: Proc. Amer. Math. Soc. 90 (1984), 360-362
MSC: Primary 42C05; Secondary 44A60
MathSciNet review: 728348
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of modified moments is studied. Let $ \left( {{P_n}\left( x \right)} \right)_n^\infty = 0$ be an orthogonal polynomial sequence. Given a sequence $ \left( {{d_n}} \right)_n^\infty = 0$ of real numbers, does there exist a bounded nondecreasing function with infinitely many points of increase such that for every $ n \in {{\mathbf{N}}_0}$, $ {d_n} = \int_{ - \infty }^\infty {{P_n}} (x)d\mu (x)$? Is there any information about the support of $ \mu$? A necessary and sufficient condition for the existence of such a function $ \mu $ is given in terms of the positivity of certain determinants. For certain $ \left( {{P_n}\left( x \right)} \right)_{n = 0}^\infty $ a description of the support of $ \mu $ is established.


References [Enhancements On Off] (What's this?)

  • [1] C. Berg. Studies définies négatives et espaces de Dirichlet sur la sphère, Sém. Brelot-Choquet-Deny, Théorie du Potentiel, 13e année, 1969/70.
  • [2] Claude Brezinski, Padé-type approximation and general orthogonal polynomials, International Series of Numerical Mathematics, vol. 50, Birkhäuser Verlag, Basel-Boston, Mass., 1980. MR 561106 (82a:41017)
  • [3] Robert I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101. MR 0394034 (52 #14840)
  • [4] Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922 (34 #4757)
  • [5] Rupert Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. (7) 3 (1983), no. 2, 185–209. MR 735062 (85g:33009)
  • [6] C. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. II, Springer-Verlag, Berlin and New York, 1964.
  • [7] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. MR 0008438 (5,5c)
  • [8] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42C05, 44A60

Retrieve articles in all journals with MSC: 42C05, 44A60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1984-0728348-2
PII: S 0002-9939(1984)0728348-2
Keywords: Moment problems, orthogonal polynomials
Article copyright: © Copyright 1984 American Mathematical Society