Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Picard theorem for Riemann surfaces

Author: H. L. Royden
Journal: Proc. Amer. Math. Soc. 90 (1984), 571-574
MSC: Primary 30F35; Secondary 30F99
MathSciNet review: 733408
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ W$ be a Riemann surface other than the sphere, plane, punctured plane or torus. Let $ f$ be a holomorphic map of the punctured disk $ 0 < \left\vert z \right\vert < 1$ into $ W$. Then $ f$ can be extended to a holomorphic map of the disk $ \left\vert z \right\vert < 1$, possibly, into a Riemann surface $ {W^ * }$ containing $ W$. We give a new proof of this fact and explore some consequences of it.

References [Enhancements On Off] (What's this?)

  • [1] M. Heins, On Fuchsoid groups that contain parabolic transformations, Contributions to Function Theory, Tata Inst., Bombay, 1960. MR 0151613 (27:1597)
  • [2] H. Huber, Über analytische Abbildungen Riemannschen Flächen in sich, Comment. Math. Helv. 27 (1953), 1-73. MR 0054051 (14:862d)
  • [3] A. Marden, I. Richards and B. Rodin, Analytic self-mappings of Riemann surfaces, J. Analyse Math. 18 (1967), 197-225. MR 0212182 (35:3057)
  • [4] M. Ohtsuka, On the behavior of an analytic function about an isolated boundary point, Nagoya Math. J. 4 (1952), 103-108. MR 0048586 (14:36d)
  • [5] -, Boundary components of abstract Riemann surfaces, Lectures on Functions of a Complex Variable (W. Kaplan, ed.), Ann Arbor, 1955, pp. 303-307. MR 0069277 (16:1012b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30F35, 30F99

Retrieve articles in all journals with MSC: 30F35, 30F99

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society