Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Curvature and the backward shift operators


Author: G. Misra
Journal: Proc. Amer. Math. Soc. 91 (1984), 105-107
MSC: Primary 47B35
DOI: https://doi.org/10.1090/S0002-9939-1984-0735574-5
MathSciNet review: 735574
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\varphi _\alpha }$ be a Möbius transformation of the unit disk $ {\mathbf{D}}$, $ \left\vert \alpha \right\vert < 1$. We characterize all the operators $ T$ in $ {B_1}\left( {\mathbf{D}} \right)$ which are unitarily equivalent to $ {\varphi _\alpha }\left( T \right)$ for all $ \alpha $ with $ \left\vert \alpha \right\vert < 1$, using curvature techniques.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B35

Retrieve articles in all journals with MSC: 47B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0735574-5
Article copyright: © Copyright 1984 American Mathematical Society