Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Equivariant triviality theorems for Hilbert $ C\sp{\ast} $-modules


Authors: J. A. Mingo and W. J. Phillips
Journal: Proc. Amer. Math. Soc. 91 (1984), 225-230
MSC: Primary 46L05; Secondary 46M20
DOI: https://doi.org/10.1090/S0002-9939-1984-0740176-0
MathSciNet review: 740176
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to give an exposition of the various triviality theorems, the equivariant version of a result due to L. Brown, and a simplification of the proof of Kasparov's triviality theorems.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc. 21 (1969), 749-752. MR 0240633 (39:1980)
  • [2] L. G. Brown, Stable isomorphism of hereditary subalgebras of $ {C^ * }$-algebras, Pacific J. Math. 71 (1977), 335-348. MR 0454645 (56:12894)
  • [3] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of $ {C^ * }$-algebras, Pacific J. Math. 71 (1977), 349-363. MR 0463928 (57:3866)
  • [4] J. Dixmier, $ {C^ * }$-algebras, North-Holland, Amsterdam, 1977. MR 0458185 (56:16388)
  • [5] J. Dixmier and A. Douady, Champs continus d'espaces Hilbertiens et de $ {C^ * }$-algebras, Bull. Soc. Math. France 91 (1963), 227-284. MR 0163182 (29:485)
  • [6] M. Dupré and P. A. Fillmore, Triviality theorems for Hilbert modules, Topics in Modern Operator Theory (C. Apostol et al., eds.), Birkhäuser, Basel, 1981. MR 672817 (84h:46096)
  • [7] G. G. Kasparov, Hilbert $ {C^ * }$-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150. MR 587371 (82b:46074)
  • [8] -, The operator $ K$-functor and extensions of $ {C^ * }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571-636; English transl., Math. USSR-Izv. 16 (1981), 513-572. MR 582160 (81m:58075)
  • [9] -, $ K$-theory, group $ {C^ * }$-algebras, and higher signatures. Part I, Conspectus. Chernogolovka, 1981 (preprint).
  • [10] M. A. Rieffel, Induced representations of $ {C^ * }$-algebras, Adv. in Math. 13 (1974), 176-257. MR 0353003 (50:5489)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05, 46M20

Retrieve articles in all journals with MSC: 46L05, 46M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0740176-0
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society