Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On maxima of Takagi-van der Waerden functions

Author: Yoshikazu Baba
Journal: Proc. Amer. Math. Soc. 91 (1984), 373-376
MSC: Primary 26A27
MathSciNet review: 744632
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalizing Takagi's function $ {F_2}\left( x \right)$ and van der Waerden's function $ {F_{10}}\left( x \right)$, we introduce a class of nowhere differentiable continuous functions $ {F_r}\left( x \right)$, $ r \geqslant 2$. Some properties of $ {F_r}\left( x \right)$ concerning especially maxima are discussed. When $ r$ is even, the Hausdorff dimension of the set of $ {x^,}$'s giving the maxima of $ {F_r}\left( x \right)$ is proved to be $ 1/2$.

References [Enhancements On Off] (What's this?)

  • [1] T. Takagi, A simple example of the continuous function without derivative, Proc. Phys.-Math. Soc. Tokyo Ser. II 1 (1903), 176-177.
  • [2] B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, Math. Z. 32 (1930), no. 1, 474–475 (German). MR 1545179, 10.1007/BF01194647
  • [3] B. Martynov, On maxima of the van der Waerden function, Kvant, June 1982, 8-14. (Russian)
  • [4] Masaya Yamaguti and Masayoshi Hata, Weierstrass’s function and chaos, Hokkaido Math. J. 12 (1983), no. 3, 333–342. MR 719972

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A27

Retrieve articles in all journals with MSC: 26A27

Additional Information

Keywords: Nowhere differentiable continuous function, Hausdorff dimension
Article copyright: © Copyright 1984 American Mathematical Society