Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a generalized moment problem. II

Authors: J. S. Hwang and G. D. Lin
Journal: Proc. Amer. Math. Soc. 91 (1984), 577-580
MSC: Primary 44A60; Secondary 26A48
MathSciNet review: 746093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, we have extended the well-known Müntz-Szász theorem by showing that if $ f(z)$ is absolutely continuous and $ \vert f'(x)\vert \geqslant k > 0$ a.e. on $ (a,b)$, where $ a \geqslant 0$ and if $ \{ {n_p}\} $ is a sequence of positive numbers tending to infinity and satisfying $ \sum _{p = 1}^\infty 1/{n_p} = \infty $, then the sequence $ \{ f{(x)^{{n_p}}}\} $ is complete on $ (a,b)$ if and only if $ f(x)$ is strictly monotone on $ (a,b)$. We now apply Zarecki's theorem to improve the condition " $ \vert f'(x)\vert \geqslant k > 0$ a.e. on $ (a,b)$" by the condition $ f'(x) \ne 0$ a.e. on $ (a,b)$". Furthermore, we extend some well-known theorems of Picone, Mikusiński, and Boas.

References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Jr., Remarks on a moment problem, Studia Math. 13 (1953), 59-61. MR 0058666 (15:407e)
  • [2] -, Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [3] J. S. Hwang, On a generalized moment problem, Proc. Amer. Math. Soc. 87 (1983), 88-89. MR 677238 (84f:44019)
  • [4] J. G. Mikusiński, Remarks on the moment problem and a theorem of Picone, Colloq. Math. 2 (1951), 138-141. MR 0043150 (13:214d)
  • [5] I. P. Natanson, Theory of functions of a real variable, Ungar, New York, Vol. I, 1955 and Vol. II, 1960. MR 0067952 (16:804c)
  • [6] S. Saks, Theory of the integral, Monografie Matematyczne, PWN, Warsaw, 1937.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A60, 26A48

Retrieve articles in all journals with MSC: 44A60, 26A48

Additional Information

Keywords: Completeness, moment problem, absolutely continuous and monotone function
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society