Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Estimates for nonanalytic cusp forms


Author: David Johnson
Journal: Proc. Amer. Math. Soc. 92 (1984), 1-9
MSC: Primary 11F12
DOI: https://doi.org/10.1090/S0002-9939-1984-0749879-5
MathSciNet review: 749879
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Estimates for the magnitude of nonanalytic cusp forms are obtained via the theory of the Selberg transformation and Fourier coefficient estimates.


References [Enhancements On Off] (What's this?)

  • [1] R. W. Bruggeman, Fourier coefficients of cusp forms, Invent. Math. 45 (1978), 1-18. MR 0472701 (57:12394)
  • [2] T. Kubota, Elementary theory of Eisenstein series, Halstead Press, New York, 1973. MR 0429749 (55:2759)
  • [3] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183. MR 0031519 (11:163c)
  • [4] H. Neunhoffer, Über die Analytische Fortsetzung von Poincarereihen, S-B Heidelberger Akad. Wiss. Math-Nat. Kl. Abh. 2 (1973). MR 0352007 (50:4495)
  • [5] W. Roelcke, Des Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Ann. 168 (1967), 261-324. MR 0243062 (39:4386)
  • [6] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11F12

Retrieve articles in all journals with MSC: 11F12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0749879-5
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society