Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A vanishing theorem for open orbits on complex flag manifolds

Authors: Wilfried Schmid and Joseph A. Wolf
Journal: Proc. Amer. Math. Soc. 92 (1984), 461-464
MSC: Primary 32F10; Secondary 22E46, 32L20
MathSciNet review: 759674
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A real reductive Lie group $ G$ acts on complex flag manifolds $ {G_{\mathbf{C}}}$/(parabolic subgroup). The open orbits $ D = G(x)$ are precisely the homogeneous complex manifolds $ G/H$, where $ H$ is the centralizer of a torus. We prove that $ D$ is ($ (s + 1)$)-complete in the sense of Andreotti and Grauert, with $ s$ = complex dimension of a maximal compact subvariety of $ D$. Thus $ {H^q}(D,\mathcal{F}) = 0$ for $ q > s$ and any coherent sheaf $ \mathcal{F} \to D$. This vanishing theorem is needed for the realization of certain unitary representations on Dolbeault cohomology groups of homogeneous vector bundles.

References [Enhancements On Off] (What's this?)

  • [1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. MR 0150342 (27:343)
  • [2] J. Rawnsley, W. Schmid and J. A. Wolf, Singular representations and indefinite harmonic theory, J. Funct. Anal. 51 (1983), 1-114. MR 699229 (84j:22022)
  • [3] W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Thesis, University of California at Berkeley, 1967; Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 56-59. MR 0225930 (37:1520)
  • [4] -, $ {L^2}$ cohomology and the discrete series, Ann. of Math. (2) 103 (1976), 375-394. MR 0396856 (53:716)
  • [5] J. A. Wolf, The action of a real semisimple Lie group on a complex flag manifold. II: Unitary representations on partially holomorphic cohomology spaces, Mem. Amer. Math. Soc. No. 138 (1974). MR 0393350 (52:14160)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32F10, 22E46, 32L20

Retrieve articles in all journals with MSC: 32F10, 22E46, 32L20

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society