Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Trotter's product formula for semigroups generated by quasilinear elliptic operators


Author: Michiaki Watanabe
Journal: Proc. Amer. Math. Soc. 92 (1984), 509-514
MSC: Primary 35K55; Secondary 47H20
DOI: https://doi.org/10.1090/S0002-9939-1984-0760935-8
MathSciNet review: 760935
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Trotter's product formula is given for nonlinear semigroups in $ {L^1}({R^N})$ generated by quasilinear operators of the form $ \Delta \phi $, where $ \phi $ is a suitable function: formally $ \exp (t\Delta \phi )u = {\lim _{h \downarrow 0}}{\left\{ {\exp (h\Delta {\phi _1}) \cdots \exp (h\Delta {\phi _k})} \right\}^{[t/h]}}u$, where $ \phi = {\phi _1} + \cdots + {\phi _k}$. The proof is carried out by a new method for construction of a semigroup with generator $ \Delta \phi $ in $ {L^1}({R^N})$.


References [Enhancements On Off] (What's this?)

  • [1] Ph. Bénilan, H. Brézis and M. G. Crandall, A semilinear elliptic equation in $ {L^1}({R^N})$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 523-555. MR 0390473 (52:11299)
  • [2] Ph. Bénilan and M. G. Crandall, The continuous dependence on $ \phi $ of solutions of $ {u_t} - \Delta \phi (u) = 0$, Indiana Univ. Math. J. 30 (1981), 161-177. MR 604277 (83d:35071)
  • [3] A. E. Berger, H. Brézis and C. W. Rogers, A numerical method for solving the problem $ {u_t} - \Delta f(u) = 0$, RAIRO Anal. Numér. 13 (1979), 297-312. MR 555381 (81g:65120)
  • [4] H. Brézis and A. Pazy, Semigroups of nonlinear contractions on convex sets, J. Funct. Anal. 6 (1970), 237-281. MR 0448185 (56:6494)
  • [5] -, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal. 9 (1972), 63-74. MR 0293452 (45:2529)
  • [6] J-M. Coron, Formules de Trotter pour une équation d'évolution quasilinéaire du 1 er ordre, J. Math. Pures Appl. 9 (1982), 91-112. MR 664343 (84c:35059)
  • [7] M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformation on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 0287357 (44:4563)
  • [8] T. Kato and K. Masuda, Trotter's product formula for nonlinear semi-groups generated by the subdifferentials of convex functionals, J. Math. Soc. Japan 30 (1978), 169-178. MR 0477931 (57:17431)
  • [9] S. Oharu and T. Takahashi, A convergence theorem of nonlinear semigroups and its application to first order quasilinear equations, J. Math. Soc. Japan 26 (1974), 124-160. MR 0341216 (49:5966)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K55, 47H20

Retrieve articles in all journals with MSC: 35K55, 47H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0760935-8
Keywords: Nonlinear semigroup, Trotter's product formula, quasilinear operator
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society