On solutions of a nonlinear wave question when the ratio of the period to the length of the interval is irrational

Author:
P. J. McKenna

Journal:
Proc. Amer. Math. Soc. **93** (1985), 59-64

MSC:
Primary 35B10; Secondary 35L70

DOI:
https://doi.org/10.1090/S0002-9939-1985-0766527-X

MathSciNet review:
766527

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The semilinear wave equation with , is -periodic in , is considered for some situations in which is not a rational multiple of . Various existence results depending on the range of are given, which contrast sharply with the case where is a rational multiple of .

**[1]**A. Bahri and H. Brezis,*Periodic solutions of a nonlinear wave equation*, Proc. Roy. Soc. Edinburgh Sect. A**85**(1980), 313-320. MR**574025 (82f:35011)****[2]**H. Brezis and L. Nirenberg,*Characterization of the ranges of some nonlinear operators, and applications to boundary value problems*, Ann. Scuola Norm. Pisa Cl. Sci.**5**(1978), 225-326. MR**0513090 (58:23813)****[3]**H. Brezis,*Periodic solutions of nonlinear vibrating strings*, Proc. Sympos. Pure Math., vol. 39, Amer. Math. Soc., Providence, R. I., 1983. MR**703685 (84i:35100)****[4]**J. Cassels,*An introduction to Diophantine approximation*, Cambridge Univ. Press, Cambridge, 1965. MR**0087708 (19:396h)****[5]**A. C. Lazer,*Application of a lemma on bilinear forms to a problem in nonlinear oscillations*, Proc. Amer. Math. Soc.**33**(1972), 89-94. MR**0293179 (45:2258)****[6]**P. J. McKenna,*On the reduction of a semilinear hyperbolic problem to a Landesman-Lazer problem*, Houston J. Math.**4**(1978), 577-581. MR**523615 (83b:35106)****[7]**I. Niven and H. S. Zuckerman,*The theory of numbers*, 4th ed., Wiley, New York, 1980. MR**572268 (81g:10001)****[8]**P. H. Rabinowitz,*Some minimax theorems and applications to nonlinear partial differential equations*, Nonlinear Analysis, a volume in honor of E. H. Rothe, Academic Press, 1976. MR**0501092 (58:18545)****[9]**G. R. Sell,*The prodigal integral*, Amer. Math. Monthly**84**(1977), 162-167. MR**0427556 (55:587)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35B10,
35L70

Retrieve articles in all journals with MSC: 35B10, 35L70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0766527-X

Keywords:
Boundary value problems,
hyperbolic contractions,
compactness

Article copyright:
© Copyright 1985
American Mathematical Society