Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Some remarks on homeomorphisms of compact Lie groups


Authors: S. C. Bagchi and A. Sitaram
Journal: Proc. Amer. Math. Soc. 93 (1985), 159-163
MSC: Primary 53C35; Secondary 22E46
DOI: https://doi.org/10.1090/S0002-9939-1985-0766548-7
MathSciNet review: 766548
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ G$ is a compact connected semisimple Lie group and $ H$ a compact group of homeomorphisms of $ G$ containing all left and right translations of $ G$, then there exists a positive integer $ k$ such that for any $ \tau \in H$, $ {\tau ^k}$ is, modulo a translation, an inner automorphism.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C35, 22E46

Retrieve articles in all journals with MSC: 53C35, 22E46


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0766548-7
Keywords: Semisimple Lie group, Riemannian symmetric space, compact transformation group
Article copyright: © Copyright 1985 American Mathematical Society