A nonstandard functional approach to Fubini's theorem

Author:
Peter A. Loeb

Journal:
Proc. Amer. Math. Soc. **93** (1985), 343-346

MSC:
Primary 28E10

DOI:
https://doi.org/10.1090/S0002-9939-1985-0770550-9

MathSciNet review:
770550

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we use a functional approach to the integral to obtain a special case of the Keisler-Fubini theorem; the general case can be obtained with a similar proof. An immediate application is the standard Fubini theorem for products of Radon measures. Similar methods give the Weil formula for quotient groups of compact Abelian groups.

**[1]**A. E. Hurd and P. A. Loeb,*An introduction to nonstandard real analysis*, Academic Press (to appear). MR**806135 (87d:03184)****[2]**H. J. Keisler,*An infinitesimal approach to stochastic analysis*, Mem. Amer. Math. Soc. No. 297 (1984). MR**732752 (86c:60086)****[3]**P. A. Loeb,*An introduction to nonstandard analysis and hyperfinite probability theory*, Probabilistic Analysis and Related Topics (A. T. Bharucha-Reid, ed.), Academic Press, New York, 1979, pp. 105-142. MR**556680 (80m:60005)****[4]**-,*A functional approach to nonstandard measure theory*, Proc. S. Kakutani Retirement Conf., Contemporary Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1984, pp. 251-261. MR**737406 (86b:28026)****[5]**-,*Measure spaces in nonstandard models underlying standard stochastic processes*. Proc. Internat. Congr. of Math. (Warsaw, 1983) (to appear).**[6]**L. H. Loomis,*An introduction to abstract harmonic analysis*, Van Nostrand, Princeton, N. J., 1953. MR**0054173 (14:883c)****[7]**A. Robinson,*Non-standard analysis*, North-Holland, Amsterdam, 1966. MR**0205854 (34:5680)****[8]**K. D. Stroyan and W. A. J. Luxemburg,*Introduction to the theory of infinitesimals*, Pure and Appl. Math., Vol. 72, Academic Press, New York, 1976. MR**0491163 (58:10429)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28E10

Retrieve articles in all journals with MSC: 28E10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0770550-9

Article copyright:
© Copyright 1985
American Mathematical Society