A simple intuitive proof of a theorem in degree theory for gradient mappings

Author:
James C. Scovel

Journal:
Proc. Amer. Math. Soc. **93** (1985), 751-753

MSC:
Primary 55M25; Secondary 58C05, 58E05

DOI:
https://doi.org/10.1090/S0002-9939-1985-0776215-1

MathSciNet review:
776215

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple, intuitive proof of a known theorem: the degree of the gradient of a coercive functional on a large ball in is one.

**[H]**Amann,*A note on degree theory for gradient mappings*, Proc. Amer. Math. Soc.**85**(1982), 591-595. MR**660610 (83i:47069)****[M]**A. Krasnosel'skii,*The operator of translation along the trajectories of differential equations*, Transl. Math. Monos., vol. 19, Amer. Math. Soc., Providence, R.I., 1968. MR**0223640 (36:6688)****[J]**W. Milnor,*Topology from a differentiable viewpoint*, Univ. Press of Virginia, Charlottesville, Va., 1965. MR**0226651 (37:2239)****[L]**Nirenberg,*Variational and topological methods in nonlinear problems*, Bull. Amer. Math. Soc. (N.S.)**4**(1981), 267-302. MR**609039 (83e:58015)****[P]**H. Rabinowitz,*A note on topological degree for potential operators*, J. Math. Anal. Appl.**51**(1975), 483-492. MR**0470773 (57:10518)****[E]**H. Rothe,*A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors*, Math. Nachr.**4**(1950-51), 12-27. MR**0040597 (12:720c)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55M25,
58C05,
58E05

Retrieve articles in all journals with MSC: 55M25, 58C05, 58E05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1985-0776215-1

Article copyright:
© Copyright 1985
American Mathematical Society