Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Matrix completion theorems


Author: Morris Newman
Journal: Proc. Amer. Math. Soc. 94 (1985), 39-45
MSC: Primary 15A33; Secondary 15A57
DOI: https://doi.org/10.1090/S0002-9939-1985-0781052-8
MathSciNet review: 781052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a principal ideal ring, $ {M_{t,n}}$ the set of $ t \times n$ matrices over $ R$. The following results are proved:

(a) Let $ D \in {M_{n,n}}$. Then the least nonnegative integer $ t$ such that a matrix $ \left[ {\begin{array}{*{20}{c}} * & * \\ * & D \\ \end{array} } \right]$ exists which belongs to $ {\text{GL(}}n + t,R)$ is $ t = n - p$, where $ p$ is the number of invariant factors of $ D$ equal to 1.

(b) Any primitive element of $ {M_{1,2n}}$ may be completed to a $ 2n \times 2n$ symplectic matrix.

(c) If $ A,B \in {M_{n,n}}$ are such that $ [A,B]$ is primitive and $ A{B^T}$ is symmetric, then $ [A,B]$ may be completed to a $ 2n \times 2n$ symplectic matrix.

(d) If $ A \in {M_{t,t}},B \in {M_{t,n - t}}$, are such that $ [A,B]$ is primitive and $ A$ is symmetric, then $ [A,B]$ may be completed to a symmetric element of $ {\text{SL(}}n,R{\text{)}}$, provided that $ 1 \leqslant t \leqslant n/3$.

(e) If $ n \geqslant 3$, then any primitive element of $ {M_{1,n}}$ occurs as the first row of the commutator of two elements of $ {\text{SL(}}n,R{\text{)}}$.


References [Enhancements On Off] (What's this?)

  • [1] C. C. MacDuffee, The theory of matrices, Chelsea, New York, 1946.
  • [2] M. Newman, Integral matrices, Academic Press, New York, 1972. MR 0340283 (49:5038)
  • [3] -, Symmetric completions and products of symmetric matrices, Trans. Amer. Math. Soc. 186 (1973), 191-201. MR 0485931 (58:5725)
  • [4] I. Reiner, Symplectic modular complements, Trans. Amer. Math. Soc. 77 (1954), 498-505. MR 0067076 (16:666e)
  • [5] C. L. Siegel, Über die analytische Theorie der quatratischen Formen, Ann. of Math. (2) 36 (1935), 527-606. MR 1503238

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A33, 15A57

Retrieve articles in all journals with MSC: 15A33, 15A57


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1985-0781052-8
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society